期刊文献+

关于k角形数列及其行列式

On the r Angular Number's Series and Its Determinant
下载PDF
导出
摘要 对任意正整数n,下k角形数数列定义为{ak(n)}表示不超过n的最大k角形数,上k角形数数列定义为{bk(n)}表示不小于n的最小k角形数。利用初等分析方法研究{ak(n)}和{bk(n)},并给出由两个数列又构成的行列式的一些特殊性质。 Let n be a positive integer, {ak(n) } be the largast k angular number less than or equal to n, and { bk (n) } be the smallest k angular number greater than or equal to n. The elementary methods is used to study the value of the determinant formed by the series { ak (n) } and { bk (n) } , and two interesting conclusion aregiven.
作者 黄炜
出处 《科学技术与工程》 2009年第17期5070-5072,共3页 Science Technology and Engineering
基金 宝鸡职业技术学院重点科研基金(ZK0256)资助
关键词 k角形数 Smarandache数列 行列式 rangular number Smarandache Series determinant
  • 相关文献

参考文献2

二级参考文献16

  • 1徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 2Smarandache F.Only Problems,not Solutions. Chicago:Xiquan Publ. House,1993.
  • 3Zhu Weiyi. On the k-power complement and k-power free number sequence. Smaran-dache Notions Journal,2004,14:66-69.
  • 4Yao Weili.On the k-power complement sequence.Research on Smarandache Problems in Number Theory.2004,Hexis,43-46.
  • 5Liu Hongyan and Lou Yuanbing. A note on the 29-th Smarandache's problem. Smaran-dache Notions Journal,2004,14:156-158.
  • 6Xu Zhefeng. On the additive k-power complements. Research on Smarandache Problems in NUmber Theory.2004,Hexis,13-16.
  • 7Tom M.Apostol. Introduction to Analytic Number Theory. Springer-Verlag:New York, 1976.
  • 8Pan Chengdong and Pan Chengbiao.The esementary number theory.Beijing University Press:Beijing.2003.
  • 9Smarandache. Only Problems, Not Solutions[M]. Chicago:Xiquan Publishing House, 1993.
  • 10Jozsef Sandor. On certain inequalities involving the Smarandache function[J]. Scientia Magna, 2006,2 (3):78-80.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部