期刊文献+

利用PGARCH-M模型估计风险值

Estimation of Value-at-risk Using PGARCH-M Model
下载PDF
导出
摘要 建立一种新的度量风险值(VaR)模型PGARCH-M(PowerGARCH-M),并利用该模型,通过对工业指数和地产指数的VaR计算,得出基于GED分布的PGARCH-M模型估计VaR极端值更为精确,优于基于正态分布的PGARCH-M模型和PGARCH模型。 A new VaR model is established: PGARCH-M(Power GARCH-M). Empirical study using historical data of closing price of industy and index shows that PGARCH-M model based on GED distribution calculate VaR accurately, outperform PGARCH model and PGARCH-M model based on normal distribution, espcialy for extreme quantile.
作者 王苹
出处 《科学技术与工程》 2009年第17期5260-5262,共3页 Science Technology and Engineering
关键词 VAR PGARCH-M模型PGARCH模型 GED分布 VaR PGARCH-M model PGARCH model GED distribution
  • 相关文献

参考文献5

  • 1Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 1982 ;50:987-1007.
  • 2Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 1986 ;31:307-327.
  • 3Engle R F, Lilien D M, Robins R P. Estimating time-varying risk premia in the term structure: The ARCH-M model. Econometrica, 1987 ;55, :391-407.
  • 4武东,汤银才.基于稳定分布的PARCH模型[J].数理统计与管理,2007,26(4):610-614. 被引量:4
  • 5Ding, Z, Granger C W J, Engle R F. A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1993 ;1:83-106.

二级参考文献7

  • 1武东,汤银才.寿命分布的PP图[J].数理统计与管理,2004,23(5):33-39. 被引量:7
  • 2Bollerslev T.Generalized autoregressive conditional heteroskedasticity[J].Journal of Econometrics,31(1986),307-327.
  • 3Engle R.F.Autoregressive conditional heteroskedasticity with estimation of the variance of United Kingdom infiation[J].Econometrica,50(1982),987-1007.
  • 4Fama,E.F.The behavier of stock prices[J].Journal of the Business,38(1965),34-105.
  • 5Jorison P.I Value at Risk:The new benchmark for controlling market risk[M].New York:McGraw-Hill Companies,1997.
  • 6Mandelbrot,B..The variation of certain speculation prices[J].Journal of Business,26(1963),394-419.
  • 7Nolan,J.P.Stable Distributions:Models for Heavy Tailed Data[M].Springer Verlag,2005.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部