期刊文献+

基于马尔可夫场的多发性硬化症MR图像分割算法 被引量:3

Segmentation of Multiple Sclerosis Lesions Based on Markov Random Fields Model for MR Images
原文传递
导出
摘要 多发性硬化症是一种严重威胁中枢神经功能的疾病,对其病灶的分割方法研究正受到越来越多的关注。本文提出了一种基于马尔可夫场并利用多发性硬化症形态学特性的分割算法。首先运用基于MRF模型的分割算法和区域增长法,分割出脑白质所包围的区域;然后对脑白质所包围的区域再次分割,就实现了对T2加权MR脑部图像的多发性硬化症病灶分割。通过对多发性硬化症模拟和临床T2加权MR脑部图像的分割实验,表明该算法能够比较准确地分割多发性硬化症病灶,并且具有无监督、稳健性好等优点,能够应用于多发性硬化症的临床辅助诊断。 Multiple sclerosis (MS) is an inflammatory demyelinating disease that would damage central nervous system. There is a growing attention to the segmentation algorithms of MS Lesions. An MRF-based algorithm for MS lesions segmentation of T2-weighted MR brain images is developed by utilizing the morphological characteristics of MS lesion tissues. The regions circumscribed by white matter are extracted at first by MRF-based segmentation and region growing methods; the abstracted regions are then segmented again using MRF-based algorithm. The segmented MS lesions of both simulated and clinical T2-weighted MR brain images are presented in the current work. The testing results show that the proposed algorithm is robust and accurate enough for clinical use.
作者 李彬 陈武凡
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2009年第4期861-865,共5页 Journal of Biomedical Engineering
基金 国家重点基础研究发展规划项目(973)资助(2003CB716102)
关键词 图像分割 马尔可夫场 MR图像 多发性硬化症 Image segmentation Markov random field MR images Multiple sclerosis (MS)
  • 相关文献

参考文献10

  • 1ARDIZZONE E, PIRRONE R, GAMBINO O, et al. Two channels fuzzy C-means detection of multiple sclerosis lesions in multispectrai MR images[C]. IEEE ICIP, 2002: 4.
  • 2BOUDRAA A O, DEHAK S M, ZHU Y M, et al. Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering [J]. Comput Biol Med, 2000, 30(1):23-40.
  • 3PACHAI C, ZHU Y M, GRIMAUD J, et al. A pyramidal approach for automatic segmentation of multiple sclerosis lesions in brain MRI [J]. Comput Med Imaging Graph,1998, 22(5) :399-408.
  • 4LI L, LI X, LU H, et al. MRI volumetric analysis of multiple selerosis) methodology and validation[J]. IEEE Trans. on Nuclear Science, 2003, 50(5): 1686-1692.
  • 5VAN LEEMPUT K, MAES F, VANDERMEULEN D, et al. Automated segmentation of multiple sclerosis lesions by model outlier detection[J]. IEEE Trans Med Imaging, 2001, 20(8) : 677-688.
  • 6ZHU H, BASIR O. Automated brain tissue segmentation and MS Lesion detection using fuzzy and evidential reasoning[C]. 10th IEEE International Conference on Electronics, Circuits and Systems,2003, 3:1070.
  • 7LI S Z. Markov random field modeling in image analysis [M]. Springer-Verlag, 2001: 13.
  • 8DENG H W. CLAUSI D A. Unsupervised image segmentation using a simple MRF model with a new implementation scheme [J]. Pattern Recognition, 2004, 37(12) : 2323-2335.
  • 9WANG Y, ADALI T, XUAN J, et al. Magnetic resonance image analysis by information theoretic criteria and stochastic site models[J]. IEEE Trans Inf Technol Biomed, 2001, 5 (2) : 150-158.
  • 10BESAG J, GREEN P, HIGDON D, et al. Bayesian computation and stochastic system [J]. Statist Sci, 1995,10(1):3- 66.

同被引文献40

  • 1Li SZ.Markov random field modeling in image analysis.Springer-Verlag.2001.
  • 2Zhang Y,Brady M,Smith S.Segmentation of brain images through a hidden Markov random field model and the expectation-maximization algorithm.IEEE Trans Med Imaging.2001 ;20(1):45-57.
  • 3Wang Y,Adali T,Xuan J,et al.Magnetic resonance image analysis by information theoretic criteria and stochastic site models.IEEE Trans Inf Technol Biomed.2001 ;5(2):150-158.
  • 4Wyatt PP,Noble JA.MAP MRF joint segmentation and registration of medical images.Med Image Anal.2003;7(4):539-552.
  • 5Yang F,Jiang T.Pixon-based image segmentation with Markov random fields.IEEE Trans Image Process.2003;12(12):1552-1559.
  • 6Awate SP,Tasdizen T,Foster N,et al.Adaptive Markov modeling for mutual-information-based,unsupervised MRI brain-tissue classification.Med Image Anal.2006;10(5):726-739.
  • 7Besbes A,Komodakis N,et al.Shape priors and discrete MRFs for knowledge-based segmentation,computer vision and pattern recognition.Miami,FL.2009:1295-1302.
  • 8Kato Z,Pong TC.A Markov random field image segmentation model for color textured images.Image Vision Comput.2006;24(10):1103-1114.
  • 9Wu J,Chung AC.A segmentation model using compound markov random fields based on a boundary model.IEEE Trans Image Process.2007;16(1):241-252.
  • 10Benboudjema D,Pieczynski W.Unsupervised statistical segmentation of nonstationary images using triplet Markov fields.IEEE Trans Pattern Anal Mach Intell.2007;29(8):1367-1378.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部