Yetter-Drinfel’d Hopf代数的整体维数
摘要
本文证明了Yetter-Drinfel’d Hopf代数的整体维数等于它的平凡模k的投射维数.
出处
《中国科学(A辑)》
CSCD
北大核心
2009年第8期1045-1053,共9页
Science in China(Series A)
基金
国家自然科学基金(批准号:10726039)
上海财经大学"211工程"二期重点学科建设资助项目
参考文献1
-
1Yan-hua WANG & Xiao-wu CHEN Department of Applied Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China,Department of Mathematics, University of Science and Technology of China, Hefei 230026, China.Construct non-graded bi-Frobenius algebras via quivers[J].Science China Mathematics,2007,50(3):450-456. 被引量:4
二级参考文献3
-
1CHEN Xiaowu, HUANG Hualin & ZHANG Pu Department of Mathematics, University of Science and Technology of China, Hefei 230026, China,USTC Shanghai Institute for Advanced Studies, Shanghai 201315, China,Mathematical Section, the Abdus Salam ICTP, Strada Costiera 11, Trieste 34014, Italy,Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030, China.Dual Gabriel theorem with applications[J].Science China Mathematics,2006,49(1):9-26. 被引量:6
-
2LIU Gongxiang & YE Yu Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China,Department of Mathematics, University of Science and Technology of China, Hefei 230026, China.Monomial Hopf algebras over fields of positive characteristic[J].Science China Mathematics,2006,49(3):320-329. 被引量:2
-
3Xiaowu CHEN,Hualin HUANG,Yanhua WANG.A Note on "Modules, Comodules, and Cotensor Products over Frobenius Algebras"[J].Chinese Annals of Mathematics,Series B,2006,27(4):419-424. 被引量:3
共引文献3
-
1WANG YanHua Department of Applied Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China.On global dimension of Yetter-Drinfel’d Hopf algebras[J].Science China Mathematics,2009,52(10):2154-2162. 被引量:1
-
2Zhihua WANG,Libin LI.Double Frobenius algebras[J].Frontiers of Mathematics in China,2018,13(2):399-415. 被引量:1
-
3王志华,李立斌,Yinhuo Zhang.基于Benson-Carlson商环的双Frobenius代数的构造[J].中国科学:数学,2018,48(4):471-482. 被引量:1
-
1杨静化.关于剩余类环的整体维数[J].Journal of Mathematical Research and Exposition,1991,11(4):569-573.
-
2揣建军.关于环的整体维数的一个定理[J].河北大学学报(自然科学版),1994,14(2):12-14.
-
3程福长,汪明义.整体维数等于1和2的FP-环的特征[J].广西师范大学学报(自然科学版),1994,12(3):14-16.
-
4蒋志芳.内射模的投射维数[J].南京大学学报(数学半年刊),2001,18(2):179-183.
-
5焦争鸣,陶玉香,马湘玲.广义Drinfel'd偶B_(|x|τ)H的同调维数[J].河南师范大学学报(自然科学版),2000,28(3):1-4.
-
6徐爱民.关于相对同调维数[J].山东大学学报(理学版),2016,51(8):44-48.
-
7唐高华.Q[x]的一个子环的素谱及同调维数[J].南京大学学报(数学半年刊),2001,18(1):41-45. 被引量:2
-
8熊涛,王芳贵,夏国利,孙小武.余纯平坦维数换环定理[J].黑龙江大学自然科学学报,2016,33(4):435-437. 被引量:4