期刊文献+

基于高斯模型和支持向量机的人脸检测方法

Algorithm Research of Face detection based on Gaussian Model and SVM
下载PDF
导出
摘要 针对目前人脸检测方法速度与精度难以兼有的问题,本文提出了一种结合高斯模型和支持向量机的人脸检测方法。先利用皮肤颜色在YCbCr空间的聚类性,对肤色建立高斯模型以分割出可能的人脸区域,再将这些区域输入到支持向量机检测并标记出检测结果。实验结果证明,本文提出的方法检测效果令人满意。 The current face detecting method has problem that it can not detect both quickly and accurately. This paper proposes an improved method using Gaussian Model and Support Vector Machine(SVM). On the one hand, we use Gaussian Model to segment the possible facial areas for the skin color being clustered well in the YCbCr space. On the other hand,we use SVM to classify and label the result. Tests show that the method proposed in this paper performs good results.
作者 王传旭 李雪
出处 《微计算机信息》 2009年第24期204-205,227,共3页 Control & Automation
基金 基金申请人:王传旭 项目名称:视频图像中人体目标检测算法的研究 基金颁发部门:国家自然科学基金委(60641010)
关键词 人脸检测 高斯模型 支持向量机 face detection Gaussian Model Support Vector Machine
  • 相关文献

参考文献7

  • 1Rein-Lien Hsu,Mohamed Abdel-Mottaleb, Anil K.Jain.Face Detection in Color Images [J].IEEE Transactionon Pattern Analysis and Machine Intelligence, Vol.24.No.5, May2002.
  • 2J.Yang,W. Lu,A. Waibel,Skin-color modeling and adaptation[J], ACCV98, 1998.
  • 3Eclgar Osuna, Robert Freund, Federico Girosi, Training Support Vector Machines: an Application to Face Detection[J], Proceedings of CVPR'97,June 17-19, 1997.
  • 4Row ley H,Baluja S,Kanade T.Neural network-based face detection [J ].IEEE Trans PAMI,1998,20 (1) : 23- 38.
  • 5RafaelC.Gonzalez,RichardE.Woods.数字图像处理(第二版)[M].电子工业出版社.2005.
  • 6DavidA.Forsyth,JeanPonce.计算机视觉:一种现代方法[M].电子工业出版社.2004.6.
  • 7盛光磊,王世卿,张俭鸽.基于肤色的复杂背景条件下的人脸检测[J].微计算机信息,2007,23(03X):292-293. 被引量:4

二级参考文献10

  • 1韩相军,关永,王雪立,王万森.基于DSP的实时人脸检测系统[J].微计算机信息,2005,21(12Z):82-84. 被引量:7
  • 2Jimmy Liu,Kia-Fock Loe.S-Adaboost and Pattern Detection in Complex Environment Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'03)
  • 3LIENHART R,MAYDT J.An extended set of haar-like features for rapid object detection[J].IEEE ICIP 2002,2002,1:900-903
  • 4Takeshi Mita,Toshimitsu Kaneko,Osamu Hori.Joint Haar-like Features for Face Detection.Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV'05).
  • 5Dong Zhang,S.Z.Li and Daniel Gatica-Perez.Real-Time Face Detection Using Boosting in Hierarchical Feature Spaces.Proceeding of the 17th international Conference on Pattern Recognition(ICPR'04)
  • 6Learning Sample Subspace with Application to Face Detection Jianzhong Fang and Guoping Qiu Proceedings of the 17th International Conference on Pattern Recognition (ICPR'04) IEEE
  • 7A robust linear programming based boosting algorithm Yijun Sun,Sinisa Todorovic,Jian Li and Dapeng Oliver Wu 2005 IEEE
  • 8数字图像处理(第二版).冈萨雷斯等著,阮秋琦,阮宇智等译. 电子工业出版社
  • 9P.Viola and M.Jones.Rapid object detection using a boosted cascade of simple features.Proc.of CVPR,pages511-518,2001.
  • 10R.E.Schapire and Y.Singer.Improved boosting algorithms using confidence-rated predictions.Machine Learning,37(3):297-336,1999.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部