摘要
提出了融合2DPCA和贝叶斯的人脸识别方法。首先用2DPCA方法进行识别,选择得分前10名的图像作为候选图像,然后对候选图像和测试图像进行小波分解,对得到的高频与低频子图并行进行贝叶斯人脸识别,通过加权排序得到最后结果。通过在FERET人脸库上的实验表明,与传统的方法相比较,该方法降低了运算量,提高了识别率。
A novel Bayesian approach to face recognition based on 2DPCA is proposed. Firstly the system uses 2DPCA to select the 10 top-ranked candidate images, secondly each testing image and all the candidate images are decomposed into low frequency and high frequency sub-band images by applying wavelet transform, Bayesian recognition is parallel processed using these sub-band im- ages. The face recognition result was gained through weigh-adding arraying. Its efficiency and superiority are clarified by comparative experiment on a subset of FERET face data.
出处
《微计算机信息》
2009年第24期233-235,共3页
Control & Automation
基金
基金申请人:郑延斌
项目名称:基于子空间分析的人脸识别研究
基金颁发部门:河南省自然科学基金委(072300410200)