期刊文献+

基于支持向量机的人体轮廓特征的识别 被引量:1

下载PDF
导出
摘要 首先,应用背景差方法分割出运动人体轮廓,对外轮廓沿人体中线投影可以得到前后两个向量,合成1D向量作为步态特征。为有效抑制观察视角及鞋帽服饰等外界因素的干扰,克服目前常用整体模型步态识别算法的不足,提出将人体轮廓面积特征与支持向量机分类器相结合的识别方法。该方法在步态序列图像的人体轮廓进行提取和规格化,将轮廓图叠加后进行网格式划分,提取轮廓单元模块面积作为步态特征识别参量。使用南佛罗里达大学的步态数据库,分别采用线性、多项式和径向基内核函数对不同外界因素条件下的数据进行实验,该方法的正确识别率为82%~100%,且对视角及鞋帽服饰的干扰不敏感,具有更强的鲁棒性。实验表明人体轮廓面积更能反映步态特征,将该面积特征与SVM分类相结合可以获得更好的识别性能。
出处 《科技信息》 2009年第22期I0015-I0015,I0017,共2页 Science & Technology Information
基金 四川省教育厅科研基金(2006C077)
  • 相关文献

参考文献2

二级参考文献1

共引文献2278

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部