期刊文献+

径向基神经网络的汇率预测模型研究 被引量:9

Research of exchange rate forecast model based on Radial Basis Function neural network
下载PDF
导出
摘要 针对BP网络存在着收敛速度慢和局部极小的问题,提出了一种基于径向基神经网络的汇率预测研究方法。将经济变量数据归一化处理,然后送入径向基神经网络(RBF)中训练,得出相应参数,再对汇率进行预测。详细的仿真实验以及与BP神经网络的比较表明,该方法不仅运算速度较快,且预测精度明显要高于传统BP神经网络所能达到的效果。 To resolve the slow convergence and local minimum problem of BP network,an exchange rate forecast method based on Radial Basis Function Neural Network(RBFNN) is proposed.Data on economic variables is normalized,and then is put into the RBFNN in training.Corresponding parameters are got and then the exchange rate is predicted.Detailed simulation results and comparisons with Back-Propagation(BP) network show that,the operation speed of the method is faster and the forecast accuracy is higher than the traditional BP neural network can be achieved obviously.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第24期210-212,共3页 Computer Engineering and Applications
基金 2009上海市教委创新项目(NoAASH0904) 上海市2007年科技攻关重点项目(No075115002)
关键词 径向基函数 神经网络 汇率 预测 Radial Basis Function(RBF) neural network exchange rate forecast
  • 相关文献

参考文献2

二级参考文献15

  • 1惠晓峰,李喆,魏庆泉.Using fuzzy neural networks for RMB/USD real exchange rate forecasting[J].Journal of Harbin Institute of Technology(New Series),2005,12(2):189-192. 被引量:2
  • 2Guoqiang Zhang, Eddy Patuwo, Michael Hu. Forecasting with artificial neural networks: The state of the art [J]. International Journal of Forecasting , 1998, 14: 35-62.
  • 3Befenes.Constructive learning and its application to currency exchange rate forecasting. In: Neural networks in finance and investing, using artificial intelligence to improve real world performance , 1993, 465- 493.
  • 4CM Kuan, T Liu. Forecasting exchange rates using feedforward and recurrent neural networks [ J]. Journal of Applied Econometrics, 1995, 10 (4):347- 64.
  • 5De Mates. Neural networks for forecasting exchange rates: [dissertation n]. Canada: The University of Manitoba, 1994.
  • 6Gioqinang Zhang, Michael Y. Hu. Neural Network Forecasting of the British Pound/US Dollar Exchange Rate [J]. Omega, Int.J. Mgmt Sci, 1998, 26 (4) : 495 - 506.
  • 7Mona R. El Shazly, Hassan E. El Shazly. Comparing the forecasting performance of neural networks and forward exchange rates [J]. Journal of Multinational Financial Management, 1997 (7): 345- 356.
  • 8Huseyin Ince, Theodore B. Trafalis. A hybrid model for exchange rate prediction [J]. Decision Support Systerm, 2006, 42 (10): 1054-1062.
  • 9Bates JM, Granger CWJ. The combination of forecasts [J]. Operations Research Quarterly, 1969, 20:451 - 68.
  • 10Michael Y. Hu, Christos Tsoukalas. Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates [ J ]. Journal of International Financial Markets, Institutions and Money, 1999, (9): 407-422.

共引文献22

同被引文献90

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部