期刊文献+

基于混沌理论改进希尔加密系统密钥矩阵 被引量:2

Improvement in Key Matrix of Hill Cipher System Based on Chaos Theory
下载PDF
导出
摘要 希尔加密系统密钥矩阵最关键,针对目前利用希尔加密系统为加密图像构造的自逆矩阵没有充分随机性的问题,采用具有完全随机性的混沌动力学方程生成自逆矩阵元素。给出基于混沌和自逆矩阵理论的密钥矩阵生成算法。实验结果表明,在不影响加密速度和加密效果的基础上,利用由混沌方程生成的自逆矩阵对图象进行加密,有效的提高加密强度和健壮性。 Key matrix was the core'of Hill encryption system, Considering the problem of no complete random of the current self-invertible key matrix in the Hill encryption system for image encryption, the self-invertible key matrix element was generated by using complete random chaos dynamic equation. Key matrix generation algorithm based on chaos and self-invertible matrix theory was proposed. Experiment results expatiated that encrypting image with chaos self-invertible key matrix improved encryption strength and robust effectively without affecting encryption speed and encryption effect.
出处 《辽宁工业大学学报(自然科学版)》 2009年第4期221-224,共4页 Journal of Liaoning University of Technology(Natural Science Edition)
关键词 混沌理论 自逆矩阵 灰度图像 希尔加密系统 chaos theory self-invertible matrix gray image Hill encryption system
  • 相关文献

参考文献5

  • 1Hill, L. S. Cryptography in an Algebraic Alphabet[J]. American Math, 1929, 36(1): 306-312.
  • 2Bibhudendra Acharya, Sarat Kumar Patra, Ganapati Panda. Image Encryption by Novel Cryptosystem Using Matrix Transformation[C]//2008 First International Conference on Emerging Trends in Engineering and Technology, Chiklali, India, 2008: 77-81.
  • 3Panigrahy, S K Acharya, B Jena D. Image Encryption Using Self-Invertible Key Matrix of Hill Cipher Algorithm[C]//Proceedings of the 1st International Conference on Advances in Computing, Chikhli, India, February 2008: 21-22.
  • 4盛利元,张卿,孙克辉,王文广.一种基于混沌映射的DES密钥空间拓展方法[J].通信学报,2005,26(4):122-124. 被引量:6
  • 5曹光辉,曹继辉,姜悦岭.基于矩阵变换和混沌理论灰度图像混合加密技术[J].辽宁工学院学报,2006,26(2):87-89. 被引量:1

二级参考文献15

  • 1DAVIS R M. The Data Encryption Standard in Perspective, Computer Security Standard[S]. National Bureau of Standard. 1978.
  • 2BRUCE S. Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second Edition[M]. John Wiley & Sons, Inc. 1996.
  • 3AES (FIPS PUB 197)[EB/OL]. http://www.nist.gov/aes 2001.
  • 4NECHVATAL J, BARKER E. Report on the development advanced encryption standard (AES) [EB/OL]. http://www.nist.gov/aes 2000.
  • 5SHANNON C E. Communication theory of secrecy systems[J]. Bell Syst Tech J, 1949, 28(3):656-715.
  • 6JANIS B. ConsWaction of pseudo-random sequences from chaos[A].COC 2000[C]. St Petersburg, Russia, 2000.558-560.
  • 7CHUA L O. Experimental chaos synchronization in Chua's circuit[J].lnt J Bifurc Chaos, 1992, (3):705-708.
  • 8LORENZ E N. Deterministic non-periodic flow[J]. J Atoms Sci, 1963,20(1):130-141.
  • 9ROSSLER O E. An equation for continuous chaos[J]. Phys Lett A,1976, 57(5):397-398.
  • 10Baptista M S.Cryptography with chaos[J].Physics Letters A.1998,28(3):50-54.

共引文献5

同被引文献6

  • 1Schneier.b(美).应用密码学[M].北京:机械工业出版社,2003,76-130.
  • 2毛文波(英).现代密码学理论与实践[M].北京:电子工业出版社,2004.98-135.
  • 3Bibhudendra Acharya, Sarat Kumar Papa, Ganapati Panda. Image Encryption by Novel Cryptosystem Using Matrix Transformation [ C] //2008 First International Conference on Emerging Trends in Engineering and Technology, Chikhli, India,2008: 77-81.
  • 4Steven S. Skiena, Miguel A. Revilla.Programming Chanllenges: The Programming Contest Training Manual (Reprint Edition) [M] .Beijing.. Springer-Verlag and Tsinghua University Press, 2009: 130-131.
  • 5王文义,江坚.用Hill加密法对密码存储安全性的改进[J].中原工学院学报,2008,19(2):30-32. 被引量:1
  • 6冯舜玺.Hil加密算法的推广和实现[J].天津师大学报(自然科学版),1998,18(3):12-16. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部