期刊文献+

微/纳米结构和接枝多肽的钛表面生物活性 被引量:1

Bioactivity of Titanium Surfaces with Micro/Nanostructure and Grafted Polypeptide
下载PDF
导出
摘要 评价了经化学和仿生改性后的4种钛试样的矿化性能。4种表面改性层分别为:锐钛矿纳米管(N),微/纳米结构(MN),纳米管表面接枝精氨酸-甘氨酸-天冬氨酸-半胱氨酸(NR),微/纳米结构表面接枝精氨酸-甘氨酸-天冬氨酸-半胱氨酸(MNR)。结果显示,表面矿化沉积物是羟基磷灰石,同样条件下,试样的诱导矿化能力依次是MNR﹥MN﹥NR﹥N。在生物材料表面构建微/纳米结构并接枝多肽是一种有效的表面改性方法。 The mineralization ability of 4 kinds of titanium implants after chemical and bionic modification was evaluated. The 4 kinds of surface modification layers were anatase nanotubes (N), micro/nanostructure (MN), nanotubes with grafted Arg-Gly-Asp-Cys (NR), micro/nanostructure with grafted Arg-Gly-Asp-Cys (MNR). Results show that the surface mineralization deposition is hydroxylapatite. Under the same condition, the inducing mineralization ability of the samples is MNR〉MN〉NR〉N. Combination of developing micro/nanostructure and grafting polypeptide is an effective way of surface modification for biomaterials.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第8期1406-1409,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50871093) 教育部全国博士学位论文作者专项资金(200554)
关键词 表面改性 微/纳米结构 多肽 矿化 titanium surface modification micro/nanostructure polypeptide mineralization
  • 相关文献

参考文献22

  • 1Le Guehennec L, Soueidan A, Layrolle Pet al. Dental Materials[J], 2007, 23(7): 844.
  • 2Zinger O, Anselme K, Denzer A et al. Biomaterials[J], 2004, 25(14): 2695.
  • 3Papalexiou V, Novaes A B J, Grisi M F et al. Clinical Oral Implants Research[J], 2004, 15(1): 44.
  • 4Webster T J, Ejiofor J U. Biomaterials[J], 2004, 25(19): 4731.
  • 5冯波,翁杰,屈树新,鲁雄,汪建新.医用钛表面纳米结构化改性[J].稀有金属材料与工程,2007,36(10):1693-1697. 被引量:8
  • 6黄涛,吕刚.纳米骨材料的研究现状及临床应用(英文)[J].中国组织工程研究与临床康复,2007,11(1):194-196. 被引量:2
  • 7Popat K C, Leoni L, Grimes C A et al. Biomaterials[J], 2007, 28(21): 3188.
  • 8ChuXueji(初薛基) FengBo(冯波) WengJie(翁杰)etal.南交通大学学报,2007,42:157-157.
  • 9Oh S H, Finfnes R R, Daraio C et al. Biomaterials[J], 2005, 26(24): 4938.
  • 10Pallu S, Bourget C, Bareille R et al. Biomaterials[J], 2005, 26(34): 6932.

二级参考文献75

  • 1崔福斋,廖素三,关凯,孙天胜.矿化胶原基骨材料与BMP-2复合用于兔腰椎横突间融合[J].生物骨科材料与临床研究,2003,1(1):1-5. 被引量:38
  • 2Weiner S, Wagner H D. The material bone: structure-mechanical function relations[J]. Annu Res Mater Sci, 1998, 28: 271-298.
  • 3Mann S. Molecular recohition in biominerallization[J].Nature, 1988, 332(10): 119-124.
  • 4Archibald D D, Qadri S B, Gaber B P. Modified calcium deposition due to ultrathin organic films on silicon substrates[J]. Langmuir, 1996, 12: 538- 546.
  • 5Aksay I A, Trau M, Mann S, et al. Biomimetic pathway for assembling inorganic thin films[J]. Science,1996, 273(16): 892-896.
  • 6Archlbald D D, Mann S. Template mineralization of self-assembled anisotropic lipid microstructures [J].Nature, 1993, 364(29): 430-433.
  • 7Stapp S I, Braun P V. Molecular manipulation of microstructures: biomaterials, ceramic, and semiconductors[J]. Science, 1997, 277(29): 1242- 1248.
  • 8Sandra R, Apley W H, English D S, et al. Selection of peptides with semiconductor binding opecificity for directed nanocrystal assembly[J]. Nature, 2000, 405(8): 665 - 668.
  • 9Mann S, Qzin G A. Synthesis of inorganic materials with complex form[J]. Nature, 1996, 382(25): 313-318.
  • 10Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies [ J ]. Science, 1995, 267(24): 1138-1143.

共引文献17

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部