期刊文献+

基于项目的非邻近序列模式推荐算法 被引量:1

Item-based Non-neighbouring Sequential Pattern Recommendation Algorithms
下载PDF
导出
摘要 针对推荐系统存在的稀疏性问题,提出将非邻近序列模式挖掘算法与基于项目的协作过滤推荐算法相结合的推荐方法,通过构造Markov概率的路径加权转移矩阵,计算资源被推荐的可能性,向用户进行推荐。结果证明,在数据稀疏的情况下,较传统的基于项目的协作过滤推荐算法,该算法能有效提高推荐系统的推荐质量。 To solve the sparsity problems of recommender systems, a recommendation method is designed by means of the combination of the non-neighbouring sequential pattern mining algorithms and the item-based Collaborative Filtering(CF) recommendation algorithms. By constructing the Markov probability transfer matrix according to the paths weight sum algorithms, it computes the recommendation possibility of resources and recommends to users. Experimental results show that, on the condition of sparse data, it can improve the recommendation quality compared with the traditional item-based Collaborative Filtering recommendation algorithms.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第16期65-67,70,共4页 Computer Engineering
关键词 推荐系统 稀疏性问题 非邻近序列模式挖掘算法 基于项目的协作过滤 路径加权求和 recommender systems sparsity problems non-neighbouring sequential pattern mining algorithms item-based Collaborative Filtering(CF) path weighted sum
  • 相关文献

参考文献5

  • 1Deshpande M, Karypis G. Item-based Top-n Recommendation Algorithms[J]. ACM Trans. on Inf. Syst., 2004, 22(1): 143-177.
  • 2郭岩,白硕,于满泉.Web使用信息挖掘综述[J].计算机科学,2005,32(1):1-7. 被引量:50
  • 3Herlocker J, Konstan J, Terveen L, et al. Evaluating Collaborative Filtering Recommender Systems[J]. ACM Trans. on Information Systems, 2004, 22(1): 5-53.
  • 4Sarwar B, Karypis G, Konstan J, et al. Item-based Collaborative Filtering Recommendation Algorithms[C]//Proc. of the 10th International World Wide Web Conference. Hong Kong, China: [s. n.], 2001: 288-290.
  • 5Miller B N, Albert 1, Lam S K, et al. Movielens Unplugged: Experiences with an Occasionally Connected Recommender System[C]//Proc. of the 8th International Conference on Intelligent User Interfaces. New York, USA: ACM Press, 2003: 263-266.

二级参考文献71

  • 1Srivastava J,Cooley R,Deshpande M,Tan P-N. Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. SIGKDD Explorations,ACM SIGKDD,Jan. 2000
  • 2Mobasher B. Web Usage Mining and Personalization Draft Chapter in Practical Handbook of Internet Computing. In: Munindar P. Singh,ed. CRC Press. To appear in 2004. http://maya. cs. depaul. edu/~mobasher/pubs-subject. html # usage-mining
  • 3Cooley R,Mobasher B,Srivastava J. Data preparation for mining world wide web browsing patterns. The Journal of Knowledge and Information Systems, 1999, 1 (1). http ://maya. cs. depaul.edu/~mobasher/papers/webminer-kais. ps
  • 4Kleinberg J M. Authoritative sources in a hyperlinked environment. In: Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998
  • 5Chen M S,Park J S,Yu P S. Data mining for path traversal patterns in a Web environment. In:Proc. of the 16th Intl. Conf. on Distributed Computing Systems, 1996. 385~ 392
  • 6Mannila H,Toivonen H. Discovering generalized episodes using minimal occurrences. In: Proc. of the Second Int'l Conf. on Knowledge Discovery and Data Mining,Portland,Oregon, 1996.146~151
  • 7Yan T,Jacobsen M,Garcia-Molina H,Dayal U. From user access patterns to dynamic hypertext linking. In:Fifth Intl. World Wide Web Conf. Paris, France, 1996
  • 8World wide web committee web usage characterization activity.http://www. w3. org/WCA.
  • 9http://www. w3. org/pub/WWW/
  • 10Global Reach Internet Productions. GRIP. 1997. http://www.global-reach. com

共引文献49

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部