期刊文献+

基于拉普拉斯特征映射的分类器设计 被引量:3

Classifier Design Based on Laplacian Eigenmap
下载PDF
导出
摘要 引用监督学习策略,定义类内和类间不同的距离度量方式,以替代原来的欧式距离度量,实现对拉普拉斯特征映射算法的改进。将降维之后的结果作为BP神经网络的输入,实现分类。实验结果表明,基于改进的拉普拉斯特征映射算法降维之后的结果,减少了神经网络的训练时间,具有较好的分类正确率。 This paper defines a different distance measurement between points of inner class and points of different ones to replace the Enclidean distance measurement through introducing an supervised learning strategy. This paper realizes an improved Laplacian Eigenmap algorithm and puts the lower dimension results as the input nf BP neural network to realize classification. Experimental ,seults indicate that the improved Laplacian Eigenmap algorithm reduces the training time of BP neural network and has a better classification result.
作者 周梅 刘秉瀚
出处 《计算机工程》 CAS CSCD 北大核心 2009年第16期178-179,182,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60675058) 福建省科技计划基金资助重点项目(2008H0026)
关键词 拉普拉斯特征映射 监督学习 分类器 相异度 Laplacian Eigenmap supervised learning classifier dissimilarity
  • 相关文献

参考文献7

  • 1Tenenbaum J, Silva D D, Langford J. A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science,2000, 290(5500): 2319-2323.
  • 2Roweis S, Saul L. Nonlinear Dimensionality Reductionality Reduction by Locally Linear Embedding[J]. Science, 2000, 290(5500): 2323-2326.
  • 3Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J]. Neural Computation, 2003, 15(6): 1373-1396.
  • 4徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:68
  • 5Geng Xin, Zhan De-chuan, Zhou Zhi-hua. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification[J]. IEEE Transactions on Systems, 2005, 35(6): 1098-1107.
  • 6Weng Shifeng, Zhang Changshui, Lin Zhonglin. Exploring. the Structure of Supervised Data by Discriminant Isometric Mapping[J]. Pattern Recognition, 2005, 38(4): 599-601.
  • 7陈如云.基于BP神经网络的应用研究[J].微计算机信息,2007(24):258-259. 被引量:18

二级参考文献22

  • 1田瑞利,张忠夫.基于神经网络的虚拟电流预报仪的设计[J].微计算机信息,2006(09S):178-180. 被引量:3
  • 2[1]HYVRINEN A.Survey on independent component analysis[J].Neural Computing Surveys,1999,2 (4):94-128.
  • 3[2]TURK M,PENTLAND A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3 (1):71-86.
  • 4[3]GONZALEZ R C,WOODS R E.Digital image processing:2nd ed[M].Beijing:Publishing House of Electronics Industry,2003.
  • 5[4]SEUNG H S,LEE D D.The manifold ways of perception[J].Science,2000,290(5500):2268-2269.
  • 6[5]TENENBAUM J,SILVA D D,LANGFORD J.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 7[6]ROWEIS S,SAUL L.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
  • 8[9]ZHANG C S,WANG J,ZHAO N Y,ZHANG D.Reconstruction and analysis of multi-pose face images based on nonlinear dimensionality reduction[J].Pattern Recognition,2004,37(1):325-336.
  • 9[13]BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396.
  • 10[14]ZHANG Z Y,ZHA H Y.Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J].SIAM Journal of Scientific Computing,2005,26(1):313-338.

共引文献84

同被引文献24

  • 1Seung H S, Lee D D. The manifold ways of perception[J]. Science, 2000, 290(5500) : 2268-2269.
  • 2Tenenbaum J, Silva V D. A global geometric framework :for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500) : 2268-2269.
  • 3Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500) : 2323-2326.
  • 4Belkin M, Niyogi P. Laplacian eigemnaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6) : 1373-1396.
  • 5He X F, Yan S H, Hu Y X, et al. Face recognition using laplacianfaces [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 6Scholkpf B, Smola A. Learning with Kernels [M]. Cambridge: MIT press, 2002.
  • 7黄启宏.流形学习方法理论研究及图像中应用[D].成都:电子科技大学,2007.
  • 8Weng S F, Zhang C S, Lin Z L. Exploring the structure of supervised data by discriminant isometric mapping [J]. Pattern Recognition, 2005, 38(4): 599-601.
  • 9Blum A, Chawla S. Learning from Labeled and Unlabeled Data Using Graph Mincuts[C]//Proc. of the 18th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann Publishers, 2001: 19-26.
  • 10Zhu Xiaojin, Ghahramani Z, Lafferty J. Semi-supervised Learning Using Gaussian Fields and Harmonic Functions[C]//Proc. of the 20th International Conference on Machine Learning. Menlo Park, USA: AAAI Press, 2003: 912-919.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部