期刊文献+

用独立分量分析去除大鼠模型脑电信号中的心电干扰 被引量:1

ICA for Removal of ECG Interference Embedded in EEG Recording of Rat Experiment Model
下载PDF
导出
摘要 为有效去除混杂在大鼠模型脑电信号θ,α波频率段内的心电干扰信号,本文基于大鼠模型脑电、心电信号源之间的相互独立性,提出采用独立分量分析技术分离出混杂在大鼠模型脑电信号中的心电干扰信号.采用美国NEURO SCAN公司脑电记录系统,同步采集大鼠模型脑电和心电信号.为了比较,分别采用独立分量分析和小波分析技术去除混杂在大鼠模型脑电信号,θα波频率段内的心电干扰信号,采用频谱分析验证上述方法去除心电干扰信号的效果.结果表明,与小波分析技术相比,独立分量分析技术能够更加有效去除混杂在大鼠模型脑电信号,θα波频率段内的心电干扰信号,保持大鼠模型脑电信号的有效频率成分不丢失,为进一步评价脑功能研究提供了可靠依据. This study investigated the application of the independent component analysis (ICA) to remove electrocardiogram (ECG) interference embedded in the frequency bands θ and α waves of the electroencephalogram (EEG) recording of rat experiment model, based on the fact that there is the independence between ECG and EEG from rat. The EEG and ECG signals from rat experiment model were simultaneously acquired by using Neuroscan electroencephalogram recording system (USA). For the comparison, the wavelet analysis and ICA were applied to remove the ECG interference signal embedded in the frequency bands θ and α waves of EEG recording of rat experiment model, respectively. The power spectra of EEG obtained by using above two analysis techniques were calculated to demonstrate the validity of artifact cancellation. The results show that the performance of ICA for removing the ECG embedded in the frequency bands θ and α waves of EEG recording is superior to that of the wavelet analysis, which will be beneficial to the study on the assessment of brain function in the future.
作者 吴建宁 王珏
出处 《测试技术学报》 2009年第4期326-330,共5页 Journal of Test and Measurement Technology
基金 国家自然科学基金资助项目(60271025) 福建省青年人才科技创新资助项目(2008F3037)
关键词 大鼠脑电 独立分量分析 心电 小波分析 electroencephalogram of rat independent component analysis electrocardfogram wavelet analysis
  • 相关文献

参考文献9

二级参考文献61

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370.

共引文献305

同被引文献10

  • 1Abu-Amara F, Abdel-Qader I. Detection of breast cancer using independent component analysis[C]// IEEE International Conference on Electro/Informa tion Technology. Chicago: IEEE, 2007: 428-431.
  • 2Guo Jinyu, Liu Yuqin, Yuan Weiqi. Palmprint recog nition based on stochastic non-negative independent component analysis [J]. Journal of Optoelectronics Laser, 2011, 2201):1714-1717.
  • 3Hyvarinen A, Oja E. Independent component analy- sis:algorithm and application[J]. Neural Network, 2000,13(6) :411-430.
  • 4Susumu Takahashi, Yoshio Sakurai, Minoru Tsuka-da, et al. Classification of neuronal activities from tetrode recordings using independent component anal- ysis[J]. Neurocomputing, 2002, 49(12): 289-298.
  • 5Svensen M, Kruggel F, Benali H. ICA of MRI group studydata[J]. NeuroImage, 2002, 16(3): 551-563.
  • 6Amaud Delorme, Scott Makeig. EEGLAB: an open source toolbox for analysis of single trail EEG dynam- ics including independent component analysis[J]. Journal of Neuroscience Methods, 2004, 134(3): 9- 21.
  • 7Draper Bruce A, Kyugim Back, Marian Stewart Bart- lett, et al. Recognizing faces with PCA and ICA[J].Computer Vision and Image Understanding, 2003, 91 (7): 115-137.
  • 8Maesoumi M, Masnadi-Shirazi M A. Blind crosstalk cancellation in DSL systems using independent com- ponent analysis[J]. Electronics Letters, 2008, 44 (14): 884-886.
  • 9周仲兴,明东,朱誉环,万柏坤,綦宏志.基于扩展Informax ICA的站起想象动作脑电特征提取[J].仪器仪表学报,2009,30(3):459-464. 被引量:13
  • 10姚俊良,杨小牛,李建东,李钊.一种适用于无线通信系统的半盲ICA算法[J].华中科技大学学报(自然科学版),2010,38(3):76-79. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部