期刊文献+

相场法模拟Al-Cu合金连续冷却枝晶生长

Phase Field Modeling of Dendritic Growth of Al-Cu Alloy during Continuous Solidification Process
下载PDF
导出
摘要 采用相场、浓度场耦合的相场法,模拟了A l-Cu合金连续冷却条件下的枝晶生长过程.与以往的研究不同,本文通过指定过冷度序列,用一系列的等温凝固逼近连续冷却过程,因此避免了传统计算中温度场与相场分别采用宏观和微观两套网格及时间步长的问题.相场参数通过有限薄界面条件(thin interface lim it)获得,模拟中考虑了各向异性、浓度扰动等影响.同时通过浓度场计算分析了晶内偏析现象. The dendritic growth of A1-Cu alloy during continuous solidification is simulated by coupling the phase field to the solute field. In this paper, the approximation of continuous solidification with the isothermal solidification is adopted by appointing a series of super-cooling degree, so the unified lattice and time step are used in the present calculation. The macro-grid and time step in temperature field and micro-grid in phase field for the traditional calculation can be avoided. The parameters in phase field equation can be obtained from thin interface limit condition. The effect of anisotropy and random noise is studied in the simulation. The micro-segregation in a dendrite is also analyzed by the concentration field.
出处 《沈阳理工大学学报》 CAS 2009年第3期1-4,共4页 Journal of Shenyang Ligong University
关键词 连续凝固 枝晶生长 相场法 AL-CU合金 continuous solidification dendritic growth phase field method Al-Cu alloy
  • 相关文献

参考文献7

  • 1龙文元,蔡启舟,陈立亮,魏伯康.二元合金非等温凝固枝晶生长的相场法模拟[J].铸造,2003,52(9):695-699. 被引量:21
  • 2Kim Y T, Provatas N, Goldenfeld N, et al. Universal Dynamics of Phase-field Models for Dendritic Growth [ J ]. Phys Rev E, 1999,59 : 2546 -2549.
  • 3Wheeler A A, Boettinger W J, McFadden G B. Phase-field model for isothermal phase transition in binary alloys[J]. Physical Review E, 1992, 45:7424-7439.
  • 4Karma A, Rapple W J. Phase field Method for Computationally Efficient Modeling of Solidificatin with Arbitrary Interface Kinetics[J]. Physical Review E, 1996, 53 : 3017-3020.
  • 5Wheeler A A, Murray R J. Computation of dendrities using a phase field model[ J ]. Physical D, 1993, 66: 243-262.
  • 6大出真知子 铃木俊夫.相场法数值模拟入门.铸造工学,2001,73(5):336-336.
  • 7胡赓祥 蔡珣.材料科学基础[M].上海:上海交通大学出版社,2002..

二级参考文献18

  • 1Kobayashi R. Modeling and numerical simulations of dendritic crystal growth [J]. Physica D, 1993, 63:410.
  • 2Wheeler A A, Murrary B T, Schaefer R J. Computation of dendrites using a phase field model [J] . Physica D, 1993, 66:243.
  • 3Wang S L, Sekerka R F, Wheeler A A, et al. Thermodynamically consistent phase-field models for solidification [J]. Physica D, 1993, 69 : 189.
  • 4Murray B T, Wheeler A A, Glicksman M E. Simulations of experimentally observed dendritic growth behavior using a phase-field model [J]. J. Crystal Growth, 1995, 153:386.
  • 5Charach C h, Fife P C. Phase-field models of solidification in binary alloys:capillarity and solute trapping effects [J]. J. Crystal Growth, 1999, 198/199:1267.
  • 6TONG X, Beckermann C, Karma A. Velocity and shape selection of dendritic crystals in a forced flow [J]. Physical Rev. E. 2000,61 (1): 49.
  • 7Beckermann C, LI Q, TONG X. Microstructure evolution of equiaxed dendritic growth [J]. Sci Technol Adv Mater, 2001,(2) : 117.
  • 8Wheeler A A, Boettinger W J, McFadden G B. Phase-field model for isothermal phase transitions in binary alloys [J]. Phys. Rev.A, 1992, 45:7424.
  • 9Wheeler A A, Ahmad N A, Boettinger W J. [J]. Adv. Space Res. 1995, 16 (7): 163.
  • 10Warren J A, Boettinger W J. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method [J]. Acta metall. Mater., 1995, 43 (2): 689.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部