摘要
给出了一P_Sasakian(SP_Sasakian)黎曼流形M(φ,ξ,η,G)的浸入子流形M上的结构(Ψ,V,ν,g)是P_Sasakian(SP_Sasakian)黎曼结构的充要条件;还证明了SP_Sasakian流形不存在高于1维的反不变子流形.
In this paper a necessary and sufficient condition is given for the structure (Ψ,V,ν,g) of a submanifold M immersed in a P_Sasakian (SP_Sasakian) Riemamian manifold (φ,ξ,η,G) to be a P-Sasakian(SP-Sasakian) Riemannian structure. It is proved that there doesn′t exist an anti_invariant submanifold above one dimension of a SP_Sasakian manifold.
出处
《曲阜师范大学学报(自然科学版)》
CAS
1998年第4期33-36,共4页
Journal of Qufu Normal University(Natural Science)
关键词
黎曼流形
P-S流形
SP-S流形
子流形
P_Sasakian (SP_Sasakian) Riemannian manifold
invariant submanifold
anti_invariant submanifold