摘要
设K为有理数域Q的有限扩张,f是系数在K中的多项式.令Ωk={αk,f(αk),…,fn-1(αk)},k=1,2,…,m,用Hn,f表示以f的周期点(周期为n)为根的多项式.如果Hn,f在K上不可约,且所有轨道Ωk(k=1,2,…,m)的乘子互不相同,则Vavaldi和Hatjispyros给出了一个计算轨道Ωk(k=1,2,…,m)的乘子而无需计算这些轨道本身的算法,在本文中我们证明了Vavaldi和Hatjispyros所给的条件是多余的,为此我们证明了对于给定的多项式f=bkxk+…+b1x+b0,存在一个次数k为的多项式序列fl=bk(l)xk+…+b1(l)x+b0(l)(i∈N)使得bj(l)→hj(l→∞),j=0,1,2,…,k,并且Hn,fl在Q(b0(l),…,bk(l))上不可约(l∈N).此外,如果x0是f的周期为n的周期点,则(x-x0)xl是Hn,f的一个因子当且仅当(x-f(x0))i是Hn,f的一个因子.
Let K be a finite extension of the rational number field Q ,and f be a polynomial function with coefficients in K .Suppose that Ω k={α k,f(α k),…,f n-1 (α k)},k=1,2,…,m, are periodic orbits of f of period n ,and denote by H n,f the polynomial whose roots are the periodic points of f of essential period n . Vivaldi and Hatjispyros gave an algorithm to compute the nultipliers of orbits Ω k(k=1,2,…,m ) without computing the orbits themselves under the hypotheses that H n,f is irreducible over K and the multipliers of all orbits Ω k(k=1,2,…,m ) are distinct.We prove in this paper that the hypotheses are unnecessary,that is to say,we will remove the hypotheses and show that the algorthm given by Vivaldi and hatjispyros is still effective.For our purpose we prove that for a given polynomial f=b kx k+…+b 1x+b 0 ,there exists a sequence of polynomials f l=b k(l)x k+…+b 1(l)x+b 0(l)(l∈N) of degree k such that b j(l)-b j(j=0,1,…,k) as l→∞ and H n,f is irreducible over Q(b 0(l),…,b k(l)) for all l∈N . In addition we show that if x 0 is a periodic point of f with essential period n ,then( x-x 0) t is a factor of H n,f only if ( x-f(x 0)) t is a factor of H n,f .
出处
《湘潭大学自然科学学报》
CAS
CSCD
1998年第3期51-58,共8页
Natural Science Journal of Xiangtan University