摘要
运用Euler求和公式的改进的不等式形式,对于一类离散和∑nk=lf(k)(尤其发散级数的部分和)导出带有1个常数且联系Bernouli数的精确化不等式,并由此改进了若干渐近公式和经典不等式.
By using the improved inequality of Eulers summation formula, some accurate inequalities of discrete sums ∑nk=lf(k) (especially partial sums of divergent series), each with a constant and in relation to Bernoullis numbers, are built. Some asymptotic formulas and classical inequalities are refined.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第4期33-37,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni