摘要
在判决神经网络(DBNN)的基础上提出了一种基于模糊算法的模糊判决神经网络(FDBNN).在网络训练中引入置信度和容噪度的概念,提高了网络分类的稳定性,同时克服了(DBNN)在训练样本混有噪声时学习困难和泛化能力不高的缺点.因FDBNN在学习时的不均匀性,大大加快了网络训练的时间,提高了训练的效率.实验结果表明,FDBNN的性能高于BP网,而且也比DBNN在稳定性和识别率上有了显著的提高.
A fuzzy based decisionbased neural network(FDBNN) based on DBNN(decisionbased neural networks) is proposed in this paper, which introduces conceptions of vigilance and tolerance.FDBNN not only increases the stability of classification, but also improves the performance of learning and ability of generalization when training patterns contain noises. The nonregularity of training saves the learning time enormously and improves the efficiency of training. The experimental results show that the performance of FDBNN is better than that of BP and DBNN on stability and recognition rate.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
1998年第8期31-35,共5页
Journal of Shanghai Jiaotong University
基金
国防预研基金
国家自然科学基金
关键词
判决神经网络
置信度
容噪度
模式识别
模糊算法
decisionbased neural network(DBNN)
fuzziness
vigilance
tolerance
nonregularity of training