摘要
基于修正的一阶剪切变形理论,利用Hamilton原理导出包含横向剪切变形和转动惯量的复合材料长圆柱曲板的非线性动力方程;通过将位移和载荷展开为Fourier级数,把非线性偏微分方程组转化为二阶常微分方程组,并用四阶Runge-Kuta方法数值求解.通过算例,讨论了载荷形式、几何非线性、横向剪切变形以及辅层方式等因素对动力响应的影响.
The nonlinear dynamic equations including transverse shear deformation and rotatory inertia of composite cylindrical panels are obtained by Hamilton's philosophy. The nonlinear partial differential equations are transformed to ordinary differential equations by the expansion in Fourier series, which are numerically solved by RungeKutta method. The effects of loading forms, geometric nonlinearity, transverse shear deformation and lamination forms on the dynamic response of laminated composite cylindrical panels are discussed.
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
1998年第7期128-131,共4页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金
关键词
复合材料
圆柱曲板
非线性
动力响应
composite materias
laminated cylindrical panel
nonlinear
dynamic response