期刊文献+

基于自然图像统计特性的拼接图像检测算法 被引量:1

An Image Splicing Detection Algorithm based on Natural Image Statistics Characteristics
下载PDF
导出
摘要 图像拼接被认为是最基本和最主要的图像非法编辑操作。拼接图像检测的关键问题之一是提取拼接图像有别于自然图像的区分性特征,将其转化为模式识别问题。本文从自然图像DCT变换系数的统计特性出发,分别应用高斯分布和广义高斯分布来建立其直流分量和交流分量的统计分布模型,同时结合图像小波变换系数的能量分布特性,提取模型参数和小波域的能量分布特性形成特征向量,送入支持向量机,实现对拼接图像和自然图像的分类和检测。实验结果表明,本文算法达到了平均80%的准确率,性能优于Ng提出的基于双相干特征的拼接图像检测算法。 In all illegal image editing operations, image splicing is considered the most fundamental and most important operation. One of the key issues of image splicing detection is to extract distinct features of spliced images, which are different from the nature of natural images, and then formulate it as a pattern recognition problem. In this paper, Gaussian distribution and generalized Gaussian distribution are applied to statistically model the DC (Direct Current) and AC (Alternative Current) DCT coefficients of natural images, combining energy distribution characteristics of wavelet coefficients of images. We extract the model parameters and energy distribution characteristics as feature vector. Then the feature vector is fed into the Support Vector Machine to classify natural images and spliced images. Experimental results show the average accuracy rate can achieve 80%. The detection performance of our method is better than that of the method using bicoherence features proposed by Ng.
出处 《信号处理》 CSCD 北大核心 2009年第8期1198-1202,共5页 Journal of Signal Processing
关键词 图像拼接 自然图像 高斯模型 广义高斯模型 伪造检测 image splicing natural image Gaussian model Generalized Gaussian model forgery detection
  • 相关文献

参考文献9

  • 1T.-T. Ng, S.-F. Chang. A Data Set of Authentic and Spliced Image Blocks, ADVENT Technical Report #203- 2004-3, Columbia University, June 2004.
  • 2T. -T. Ng, S. -F. Chang, Qibin Sun. Blind Detection of Photomontage Using Higher Order Statistics. In:IEEE International Symposium on Circuits and Systems, Vancouver, Canada, 2004.
  • 3R. L. Joshi,T. R. Fischer. Comparison of generalized Gaussian and Laplacian modeling in DCT image ceding. IEEE Trans on Signal Processing Letters, 1995,2 (5) :81-82.
  • 4R. C. Reininger, J. D. Gibson. Distributions of the two-dimensional DCT coefficients for images. IEEE Transactions on Communications, 1983, COM-31 (6) : 835-839.
  • 5H. M. James, B. T. John. Detectors for discrete-time signals in non-Gaussian noise. IEEE Trans on Information Theory, 1972,18 (2) :241-250.
  • 6F. Muller. Distributions shape of two-dimensional DCT coefficients for natural images, Electronics letters, 1993,29 (22) : 1935-1936.
  • 7S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ : Prentice-Hall, 1993.
  • 8郑胜,柳健,田金文.基于支持向量机的红外小目标分割和聚类方法研究[J].信号处理,2005,21(5):515-519. 被引量:4
  • 9C. C. Chang, C. J. Lin. LIBSVM: A Library for Support Vector Machines. http://www, csie. ntu. edu. tw/- cjlin/ libsvm.

二级参考文献10

共引文献3

同被引文献12

  • 1Hsu Y F, Chang S F. Detecting image splicing using ge- ometry invariants and camera characteristics consistency [ C ]//Proc of International Conference Multimedia and Expo. Toronto : IEEE, 2006.549-552.
  • 2Luo W, Qu z, Huang J, Qiu G. A novel method for detec- ting cropped and recompressed image block [ J ]. Proceed- ings of the International Conference on Acoustics, Speech,and Signal Processing ,2007, vol. 2:217-220.
  • 3Yi-Lei Chen,Chiou-Ting Hsu. Detecting recompression of JPEG images via periodicity analysis of compression artifacts for tampering detection [ J ]. IEEE Transactions on Information Forensics and Security, 2011,6 ( 2 ) : 396-406.
  • 4Peng F, Ni Y, Long M, A complete passive blind image copy-move forensics scheme based on compound statistics features, Forensic Science International, 212 ( 1 ) ( 2011 ) e21-e25.
  • 5Chierchia G, Parrilli S, Poggi G, et al. PRNU-based de- tection of small-size image forgeries[ C ]//. 17th Interna- tional Conference on Digital Signal Processing. IEEE, 2011.1-6.
  • 6He J F, Lin Z C, Wang L F, et al. Detecting doctored JPEG images via DCT coefficient analysis [ C ] // Proceed- ings of European Conference on Computer Vision. Berlin- Heidelberg-New York : Springer-Verlag, 2006. 423- 435.
  • 7Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [ J ]. Biometrika, 1994,81:425- 455.
  • 8Mahdian B, Saic S, Using noise inconsistencies for blind image forensics, Image and Vision Computing, 27 ( 10 ) (2009) 1497-1503.
  • 9Li T Y, Wang M H, Li T J. Estimating noise parameter based on the wavelet coefficients estimation of original im- age [ C ]//j. International Conference on Challenges in En- vironmental Science and Computer Engineering. 2010, 126-129.
  • 10Gou H M. Intrinsic sensor noise features for forensic anal- ysis on scanners and scanned images [ J]. IEEE Transac- tions on Information Forensics and Security,2009,4( 3 ) : 476-491.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部