期刊文献+

一种简化的整合-激发模型分析 被引量:1

Analysis of a Simplified Integrate-and-Fire Model
下载PDF
导出
摘要 针对Lapicque提出的整合-激发模型,给出了一种新的侧抑制连接的整合-激发网络模型及其输入—输出关系。较以往的整合-激发模型,模型的活动方程被大大简化了。其运行结果很好地拟合了神经细胞的生理特性,尤其是模型较好地匹配了突触连接的非线性特性。对点火机制进行了改进,采用不同于以往的离散值的异步点火机制。使得网络的适应性有了很大的提高。在图像辨识中,方法显示出动态的特性,并具有自动波的传播特性。 To study the Integrate- and- Fire (IF) model, a new IF model is presented, and the relation between input and output is given, in which each of the nerve cells restrains the others nearby them. Although this model has been simplified greatly, it characterizes many aspects of real neurons. Especially, it is comparatively good that the model matches the non - linear performance of the synaptic connection. The previous mechanism of putting out the pulse is improved by using the asynchronous firing mechanism, which makes the network more flexible. In the image recognition, the method shows dynamic characteristic, and has the property of auto -wave transmission.
作者 张莉 冯大政
出处 《计算机仿真》 CSCD 北大核心 2009年第8期147-150,共4页 Computer Simulation
基金 国家自然科学基金(60372049)
关键词 人工神经元 整合-激发模型 异步点火机制 自动波的传播 Artificial neural net Integrate - and - fire ( IF ) model Asynchronous firing mechanism Auto - wave transmission
  • 相关文献

参考文献8

  • 1冯大政,保铮,焦李成.脉冲发放神经网络建模[J].系统工程与电子技术,1996,18(5):23-30. 被引量:4
  • 2Stephen W Kuffler, John G Nicholls and A Robert Martin著,张人骥译.神经生物学[M].北京:北京大学出版社,1991.
  • 3Matrix Computations[ M]. Hopking University Press, 1996.
  • 4D Hansel, G. Mato & C. Meunier. On numerical simulations of integrate- and- fire neural networks [ J] . Neural Comp. , 1998, 10:467 - 483.
  • 5David Terman, DeLiang Wang. Global competition and local cooperation in a network of neural oscillators [ J ]. Physica D, 1995, 81:148 - 176.
  • 6冯大政.一种人工神经元:模型及分析[J].通信学报,1992,13(5):43-48. 被引量:5
  • 7Shih - Chii Liu and Rodney Douglas. Temporal coding in a silicon network of integrate - and - fire neurons [ J ]. IEEE Trans. on Neural Networks ,2004, 5 (5) : 1305 - 1314.
  • 8黄雪梅,唐治德.基于多层前馈神经网络的图像压缩的仿真研究[J].计算机仿真,2005,22(8):118-121. 被引量:3

二级参考文献8

  • 1MartinTHagan.神经网络设计[M].北京:机械工业出版社,2002.197-235.
  • 2周培爱,可兴奋细胞的生理学,1983年
  • 3王伯扬,神经电生理学,1983年
  • 4夏良正.数字图像处理[M].南京:东南大学出版社,1999.43-83.
  • 5S Carrato. Neural networks for image compression[J]. Neural Networks: Adv. And Appl. 2 ed., Gelenbe Pub, North -Holland, Amaterdam, 1992:177 - 198.
  • 6O Abdel - Wahhab, and M M Fahmy. Image compression using multilayer neural networks[J]. IEEE proc. Vis Signal Processing, 1997- 10, 144(5).
  • 7M Mougeot, R Azencott, B Angeniol. Image compression with back propagation: improve of the visual restoration using different cost functions[J]. Neural Networks, 1991, 4(4):467 - 476.
  • 8Z He and H Li, Nonlinear predictive image coding with a neural network[ C]. Proc. ICASSP, Albuquerque, New Mexico, 1990.1009 - 1012.

共引文献9

同被引文献8

  • 1吕永浦,冯大政.新IF模型及其学习规则研究[J].系统工程与电子技术,2006,28(4):582-586. 被引量:2
  • 2Abbott L. F. and Sacha B. [J].Nelson, "Synaptic plasticity: taming the beast," nature neuroscience supplement., 2000,11(3):1178-1183.
  • 3McCulloch W. s. and Pitts. W. "A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics" [M].1943-127-147.
  • 4Gerstner and Kistler, "Spiking Neuron Models. Single Neurons, Populations, Plasticity," [M].Cambridge University Press., 2002.
  • 5Muballit Mitte, "A simple neuron model - The integrate and fire neuron," http://www.dreamincode.net/forums/ topic/72868-a-simple-neuron-model-the-integrate-and-fire -neuron.
  • 6G.Indiveri, "Modeling selective attention using a neuromorphic analog VLSI device," Neural Computat., vol. 12, pp. 2857-2880, 2000.
  • 7Joshua Jen C. Monzon, "Analog VLSI circuit design of spike-timing-dependent synaptic plasticity" [J].2000.
  • 8林凌鹏,林水生,黄乐天,刘培龙.动态STDP突触系统模型设计与验证[J].系统仿真学报,2011,23(10):2234-2238. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部