摘要
针对Lapicque提出的整合-激发模型,给出了一种新的侧抑制连接的整合-激发网络模型及其输入—输出关系。较以往的整合-激发模型,模型的活动方程被大大简化了。其运行结果很好地拟合了神经细胞的生理特性,尤其是模型较好地匹配了突触连接的非线性特性。对点火机制进行了改进,采用不同于以往的离散值的异步点火机制。使得网络的适应性有了很大的提高。在图像辨识中,方法显示出动态的特性,并具有自动波的传播特性。
To study the Integrate- and- Fire (IF) model, a new IF model is presented, and the relation between input and output is given, in which each of the nerve cells restrains the others nearby them. Although this model has been simplified greatly, it characterizes many aspects of real neurons. Especially, it is comparatively good that the model matches the non - linear performance of the synaptic connection. The previous mechanism of putting out the pulse is improved by using the asynchronous firing mechanism, which makes the network more flexible. In the image recognition, the method shows dynamic characteristic, and has the property of auto -wave transmission.
出处
《计算机仿真》
CSCD
北大核心
2009年第8期147-150,共4页
Computer Simulation
基金
国家自然科学基金(60372049)
关键词
人工神经元
整合-激发模型
异步点火机制
自动波的传播
Artificial neural net
Integrate - and - fire ( IF ) model
Asynchronous firing mechanism
Auto - wave transmission