期刊文献+

有效的结构化P2P信息检索 被引量:1

Effective information retrieval on structured P2P
下载PDF
导出
摘要 在分析了以往P2P系统信息检索基础上,针对结构化P2P检索存在的问题,提出了一种有效的结构化P2P信息检索。结合利用向量空间模型(VSM)技术和位置敏感散列(LSH)技术,使得语义内容相似的文挡易于分布在相同的节点上,提高了搜索速度。同时采用了本体知识,增强对用户请求的语义理解,提高了搜索性能。 Analyzing the application of traditional P2P information retrieval, according to disadvantage of structured P2P retrieval, an effective information retrieval of structured P2P is presented. Technologies ofvector space model and local sensitive Hashing are adopted. The basic idea is to place semantically close files into same peer nodes with high probability. Search process is improved. At the same time, Ontology idea assists P2P system better understanding the query and improves its performance.
作者 刘文娣 蔡明
出处 《计算机工程与设计》 CSCD 北大核心 2009年第16期3787-3789,3819,共4页 Computer Engineering and Design
关键词 P2P 信息检索 分布式哈希表 向量空间模型 位置敏感散列 P2P information retrieval distributed Hash table vector space model local sensitive hashing
  • 相关文献

参考文献10

  • 1Daswani N, Garcia-Molina H, Yang B. Open problems in data sharing peer-to-peer systems [C]. Heidelberg: Springer-Veda, 2003:1-15.
  • 2Li J,Loo B T, Hellerstein J,et al.On the feasibility of peer-to-peer web indexing and search[C].Berkeley:Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS), 2003: 207-215.
  • 3Reynolds P, Vahdat A.Efficient peer-to-peer keyword searching [C].Riode Janeiro,Brazil:Middleware,2003:21-40.
  • 4毛林,杨学兵.一种基于概念层次的文本特征权重计算方法[J].安徽工业大学学报(自然科学版),2008,25(3):329-333. 被引量:1
  • 5Indyk P. Approximate nearest neighbor algorithms for Frechet distance via product metrics[C].Barcelona:Symposium on Computational Geometry,2002:102-106.
  • 6唐俊华,阎保平.基于LSH索引的快速图像检索[J].计算机工程与应用,2002,38(24):20-21. 被引量:6
  • 7卢炎生,饶祺.一种LSH索引的自动参数调整方法[J].华中科技大学学报(自然科学版),2006,34(11):38-40. 被引量:6
  • 8Broder A Z,Charikar M,Frieze A M,et al.Min-wise independent permutations[J].J Comput System Sci,2000,60(3):630- 659.
  • 9Smith M K. Web ontology issue status [EB/OL] .http://www. w3.org/2001/sw/WebOnt/webont-issues.html,2003-11.
  • 10TREC: Text retrieval conference [EB/OL] .http://trec.nist.gov, 2006-05.

二级参考文献22

  • 1Guttman A R-trees. A dynamic index structure for spatial searching [C].In:Proceedings of the ACM SIGMOD International Conference on Management of Data, Boston, MA, 1984: 47~57
  • 2Bentley J L.Multidimensional binary search trees used for associative searching[J].Communications of the ACM, 1975; 18(9) :509~517
  • 3Robinson J T.The K-D-B-tree:A search structure for large multidimensional dynamic indexes[C].In:Prooeedings of the ACM SIGMOD International Conference on Management of Data,Michigan, 1981:10~18
  • 4White D A,Jain R.Similarity indexing with the SS-tree[C].In:Proceedings of the 12th International Conference on Data Engineering,New Orleans,LA, 1996:516~523
  • 5Katayama N,Sotoh S.The SR-tree:An index structure for high dimensional nearest neighbor queries[C].In:Proceedings of the ACM SIGMOD International Conference on Management of Data,Tucson,Arizona USA, 1997:369~380
  • 6Weber R,Schek H-J,Blott S.A quantitative analysis and performance study for similarity search methods in high-dimensional spaces [C]. In:Proceedings of the 24th VLDB Conference,New York,1998:194~205
  • 7Indyk P,Motwani R.Approximate nearest neighbor-towards removing the curse of dimensionality[C].In:Proceedings of the 30th Symposium on Theory of Computing, 1998:604~613
  • 8Edelsbrunner H. Algorithms in combinatorial geometry[M].Edelsbrunner: Springer-Verlag, 1987.
  • 9Weber R, Schek H, Blott S. A quantitative analysis and performance study for similarity search methodsin high dimensional spaces[C]// Ashish O S, JenniferW. Proceedings of the 24th International Conference on Very Large Data Bases (VLDB). New York:Morgan Kaufmann Publishers Inc, 1998: 194-205.
  • 10Gionis A, Indyk P, Motwani R. Similarity search in high dimensions via hashing[C]// Malcolm P A, Maria E Q, et al. Proc of VLDB. Edinburgh: Morgan Kaufmann Publishers Inc, 1999:518-529.

共引文献9

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部