期刊文献+

基于频繁项集的条件模式挖掘

Mining conditional patterns based on frequent itemsets
下载PDF
导出
摘要 在数据库挖掘中,要充分地快速地挖掘出数据库中的任意有趣模式,而现实数据挖掘查询等这种任意合成模式特别复杂,如果只利用现有的基于频繁项集算法直接进行复杂模式挖掘是困难的。为解决该问题,一种基于频繁项集的条件模式挖掘被提出。从条件模式定义,性质,条件模式挖掘算法等方面来阐述解决此类任意条件下模式挖掘的问题。该条件模式的挖掘,使得数据库进行任意模式的新知识新规律发现变得更快捷有效。在现实世界的知识挖掘中,条件模式挖掘更能贴近现实知识的发现。 Mining in the database, it is necessary to quickly and fully mine any interesting patterns in the database, and the reality of data mining, such as for any of this model is particularly complex. If only make use of the existing algorithms based on frequent itemsets, it is difficult to mine directly complex patterns. To solve the problem, mining conditional patterns based on frequent itemsets is presented. From the definition and properties of conditional patterns to conditional pattemsmining algorithm, and other aspects, it is to solve mining issues under such arbitrary conditional patterns. This mode of mining conditions, making arbitrary model of the new knowledge and laws become more efficient and effective. In the real world of knowledge mining, mining conditional patterns more close to the discovery of knowledge in the real world.
作者 王琳 罗可
出处 《计算机工程与设计》 CSCD 北大核心 2009年第16期3808-3810,3813,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60474070 10471036) 湖南省科技计划基金项目(05FJ3074) 湖南省教育厅重点基金项目(07A001)
关键词 条件模式 频繁项集 数据挖掘 支持度 性质 conditional pattem frequent itemsets data mining support properties
  • 相关文献

参考文献8

  • 1Antonie M-L,Zaane O R.Mining positive and negative association rules:An approach for confined rules[R].PKDD,2004.
  • 2颜跃进,李舟军,陈火旺.频繁项集挖掘算法[J].计算机科学,2004,31(3):112-114. 被引量:20
  • 3喻斌,武友新.更优的快速频繁模式树生成算法[J].计算机工程与设计,2007,28(20):4853-4855. 被引量:3
  • 4Adhikari A,Rao P R.A framework for synthesizing arbitrary Boolean expressions induced by frequent itemsets[C].3rd Indian Internat Conference on Artificial Intelligence,2007.
  • 5毕建欣,张岐山.关联规则挖掘算法综述[J].中国工程科学,2005,7(4):88-94. 被引量:51
  • 6Hanfiawei,MichelineKarnber.数据挖掘-概念与技术[M].北京:机械工业出版社,2005.
  • 7王小玉,王亚东,冯丽.关联规则的挖掘[J].信息技术,2003,27(1):55-57. 被引量:20
  • 8Wu X,Wu Y, Wang Y, et al.Privacy-aware market basket data set generation:A feasible approach for inverse frequent set mining [C].SIAM Internat Conference on Data Mining,2005.

二级参考文献44

  • 1周焕银,张永,蔺鹏.一种不产生候选项挖掘频繁项集的新算法[J].计算机工程与应用,2004,40(15):182-185. 被引量:14
  • 2庄晓毅,张忠能.一种改进的关联规则挖掘算法[J].计算机工程,2004,30(14):128-129. 被引量:10
  • 3陈文庆,许棠.关联规则挖掘Apriori算法的改进与实现[J].微机发展,2005,15(8):155-157. 被引量:21
  • 4[1]R.Agrawal,T.Imielinski,and A.Swami.Mining association rules between sets of items in large databases.Proceedings Of ACM SIGMOD ,May.1993, PP.207-216.
  • 5[3]Fan Jiannua and Li Deyi. An Overview of Data Mining and Knowledge Discovery, J.of Comput. Sci.&Technol, Vol.13,No.4,Jul.1998,PP.348-368.
  • 6Liu J Q,Pan Y H,Wang K,Han J W. Mining Frequent Item Sets by Opportunistic Projection, KDD'02, Edmonton, Canada, July 2002
  • 7Han J, Pei J,Yin Y. Mining Frequent Patterns without Candidate Generation. In: Proc. 2000ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00),Dallas, TX, May 2000
  • 8Pei J,Hah J,Lu H, et al. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases,In:Proc. 2001 Int. Conf. on Data Mining(ICDM'01) ,San Jose,CA,Nov. 2001
  • 9Agarwal R,Aggarwal C,Prasad V V V. Depth first generation of long patterns. In:Proc. of SIGKDD Conf. 2000
  • 10Burdick D, Calimlim M, Gehrke J. MAFIA: A maximal frequent itemset algorithm for transactional databases. In:proc. of the 17th Intl. Conf. on Data Engineering,Heidelberg, Germany, April 2001

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部