期刊文献+

玉米群体冠层实时物理模拟

Real-time Physical Simulation of Corn Canopy
下载PDF
导出
摘要 植物器官具有柔性体性质,如何快速高效地处理植物群体内部、植株之间,以及植物器官之间的碰撞检测及变形问题是进行植物群体实时物理模拟的关键。以玉米群体冠层为例,提出了四面体网格结合皮肤网格的双层架构的植物群体物理模拟方法。该方法创建与植株精细的三角形皮肤网格模型相对应的较粗糙的四面体网格包络模型,在四面体网格模型上进行物理模拟、碰撞检测等计算,然后通过四面体网格与皮肤网格间的关联将模拟结果变换到三角形精细网格模型,从而实现了较为逼真、稳定的植物群体实时物理模拟效果。 Plant organ is physically soft. The key to plants colony real-time physical simulation is to efficiently handle the collisions and deformations happening inside the colony and between the plants and their organs. Take com colony canopy as an example, a simulation framework was proposed, which integrated tetrahedral mesh with skin triangle mesh to physically simulate the plants colony canopy. Firstly, a coarser tetrahedral mesh around the triangle mesh was created, then this tetrahedral mesh was used to simulate. The original triangle mesh was deformed along with the tetrahedral mesh. The triangle mesh was displayed on the screen in the end. Smooth deforming animation of virtual plant models were thus obtained in real-time with highly realistic rendering effects.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第16期5088-5091,共4页 Journal of System Simulation
基金 国家自然科学基金(30700493) 国家高技术发展计划(2007AA10Z224) 北京市自然科学基金(4081001)
关键词 虚拟植物 物理模拟 可变形物体 四面体网格 Verlet积分 virtual plant physical simulation deformable objects tetrahedral mesh Verlet integration
  • 相关文献

参考文献10

  • 1Gibson S, Mitrich B. A Survey of Deformable Models in Computer Graphics JR]// Technical Report TR-97-19. Cambridge, MA, USA: Mitsubishi Electric Research Laboratories, 1997.
  • 2Nealen A, Muller M, Keiser R, Boxerman E, Arlsonm M. Physically Based Deformable Models in Computer Graphics [J]. Computer graphics Forum (S0167-7055), 2006, 25(4): 809-836.
  • 3Jimenez P, Thomas F, Torras C. 3D Collision Detection: A Survey [J]. Computers and Graphics (S097-8493), 2001, 25(2): 269-285.
  • 4Zhang DL, Yuen MM F. Collision Detection for Clothed Human Animation [C]//Barsky B, Shinagawa Y, Wang W, eds. Proc. of the Pacific Graphics, Hong Kong, China. USA: IEEE Computer Society Press, 2000: 328-337.
  • 5Teschner M, Heidelberger B, MOiler M, Gross M H. A Versatile and Robust Model for Geometrically Complex Deformable Solids [C]// Computer Graphics International, Crete, Greece, 2004. Washington, USA: IEEE Computer Society, 2004: 312-319.
  • 6Capell S, Green S, Gurless B, Duchamp T, Poovic Z. Interactive Skeleton-Driven Dynamic Deformations [J]. ACM Transaction on Graphics (S0730-0301), 2002, 21(3): 586-593.
  • 7Muller M, Gross M. Interactive virtual materials [C]//Proc. Graphics Interface 2004. Waterloo, Ontario, Canada: Canadian Human-Computer Communications Society, 2004: 239-246.
  • 8Gissler M. Simulation and Visualization of Topology-Changing Plastic Material [C]// Proc. CESCG, Budmerice, Slovakia, April 23-25, 2007. NY, USA: Pergamon Press, Inc., 2007: 121-128.
  • 9Spillmann J, Wagner M, Teschner M. Robust Tetrahedral Meshing of Triangle Soups [C]//Proc. Vision, Modeling, Visualization VMV'06, Aachen, Germany, Nov. 22-24, 2006. Oxford UK: Elsevier Ltd., 2006: 9-16.
  • 10单菊林,关振群,宋超.一个高效可靠的三维AFT四面体网格生成算法[J].计算机学报,2007,30(11):1989-1997. 被引量:8

二级参考文献12

  • 1关振群,单菊林,顾元宪.基于黎曼度量的复杂参数曲面有限元网格生成方法[J].计算机学报,2006,29(10):1823-1833. 被引量:20
  • 2Zienkiewicz OC.Achievements and some unsolved problems of the finite element method.International Journal for Numerical Methods in Engineering,2000,47(1-3):9-28
  • 3Du Qiang,Wang De-Sheng.Tetrahedral mesh generation and optimization based on centroidal voronoi tessellations.International Journal for Numerical Methods in Engineering,2003,56(9):1355-1373
  • 4Shephard MS,Georges MK.Automatic three-dimensional mesh generation by the finite Octree technique.International Journal for Numerical Methods in Engineering,1991,32(4):709-749
  • 5Rassineux A.Generation and optimization of tetrahedral meshes by advancing front technique.International Journal for Numerical Methods in Engineering,1998,41(4):647-651
  • 6Yamakawa Soji,Shimada Kenji.Anisotropic tetrahedral meshing via bubble packing and advancing front.International Journal for Numerical Methods in Engineering,2003,57(13):1923-1942
  • 7Cha C T,Garimella Rao V.Mesh data structure selection for mesh generation and FEA applications.International Journal for Numerical Methods in Engineering,2002,55(4):451-478
  • 8Bonet J,Peraire J.An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems.International Journal for Numerical Methods in Engineering,1991,31(1):1-17
  • 9Zhou T,Shimada K.An angle-based approach to two-dimensional mesh smoothing//Proceedings of the 9th International Meshing Roundtable.New Orleans,Louisiana,USA,2000,373-384
  • 10Ito Y,Nakahashi K.Improvements in the reliability and quality of unstructured hybrid mesh generation.International Journal for Numerical Methods in Fluids,2004,45(1):79-108

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部