期刊文献+

一种改进的Lyapunov指数谱算法及应用研究 被引量:1

Improved Method of Computing Lyapunov-spectrum and Its Application
下载PDF
导出
摘要 提出了改进的Darbyshire-Broomhead(D-B)Lyapunov指数谱算法,通过互信息函数确定嵌入延迟,利用伪近邻法(False Nearest Neighbors,FNN)确定最佳嵌入维,从而确定了Lyapunov指数的个数,克服了原算法排除可疑指数过程中容易引起过多或过少的指数的缺点,然后再根据简化D-B理论计算出整个序列的Lyapunov指数。分别对含有噪声和不含有噪声的Lorenz时间序列仿真对比验证了该算法的有效性及稳定性。最后利用该算法对输油管道压力时间序列进行了Lyapunov指数的计算并分析出该时间序列具有混沌特征。 A new method of computing the Lyapunov-spectrum based on Darbyshire-Broomhead's arithmetic (D-B) was given, in which the delay was computed based on mutual-information function, and the optional embedding was obtained based on false nearest neighbors (FNN) that would get the number of Lyapunov exponents also and Lyapunov-spectrum of time series including noise was evaluated based on the Darbyshire-Broomhead's Lyapunov- spectrum theory. This method could avoid the step of removing spurious exponents. A comparison for Lyapunov exponents of Lorenz time series with and without noise was done. The results show the validity and convergence. At last, Lyapunov-spectrums of experiential datasets of press time series for oil pipeline were computed by the method proposed. Chaos character was found from the result.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第16期5124-5126,5129,共4页 Journal of System Simulation
基金 国家自然科学基金(60534010 60774048 6074093 60728307) 长江学者发展计划 高校博士点基金(20070145015) 国家高技术研究发展专项(2006AA04Z183)
关键词 相空间重构 LYAPUNOV指数谱 LORENZ 混沌 压力时间序列 phase-space reconstruction Lyapunov-spectrum Lorenz chaos press time series
  • 相关文献

参考文献10

  • 1Vinay Varadan, Henry Leung, l-|oi Boss6. Dynamical model reconstruction and accurate prediction of power-pool time series [J]. IEEE Transactions on Instrumentation and Measurement (S0018- 9456), 2006, 55(1): 327-336.
  • 2Antz Holger. A robust method to estimate the maximal Lyapunov exponent of a time series [J]. Phys Lctt a (S0375-9601), 1994, 185(1): 77-87.
  • 3M B Kennel, R Brown, H D I Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction [J]. Phys Rev A (S1050-2947), 1992, 45(6): 3403-3411.
  • 4Gencay Ramazanetal. An algorithm for the N-Lyapunov exponents of an N-dimensional unknown dynamical system [J]. Phys D (S0167-2789), 1992, 59(1-3): 142-157.
  • 5A G Darbyshire, D S Broomhead. Robust estimation of tangent maps and Liapuaov spectra [J]. Physica D (S0167-2789), 1996, 89(3/4): 287-305.
  • 6M Banbrook, G Ushaw, S McLaughlin. How to extract Lyapunov exponents from short and noisy time series [J]. IEEE Transactions on Signal Processing (S1053-587X), 1997, 45(5): 1378-1382.
  • 7Liangyue Cao. Practival Method for Determining the minimum embedding dimension of a scalar time series [J]. Physica D (S0167-2789), 1997, 110(1/2): 43-50.
  • 8Frazer A M, H L Swinney. Independent Coordinates in Strange Attractors from Mutual Information [J]. Phys Rev A (S1050-2947), 1986, 33 (2): 1134-1140.
  • 9马红光,韩崇昭,孔祥玉,王国华,朱小菲,许剑锋.模型间歇振荡器的混沌特性分析[J].系统仿真学报,2005,17(1):249-251. 被引量:4
  • 10蒋海峰,魏学业,张屹,钱大琳.仿真交通流混沌特性研究[J].系统仿真学报,2007,19(12):2809-2812. 被引量:7

二级参考文献20

  • 1蒋海峰,马瑞军,魏学业,温伟刚.一种基于小数据量的快速识别短时交通流混沌特性的方法[J].铁道学报,2006,28(2):63-66. 被引量:7
  • 2A R Volkovskii. Chaotic Blocking Oscillator[C] Proc. 3rd Int.Specialist Workshop on Nonlinear Dynamics of Electronic Systems].Dublin, 1995.263-266.
  • 3N F Rulkov, A R Volkovskii. Threshold Synchronization of chaotic Relaxation Oscillation[J]. Phys. Lett. Pt. A, 1993, 179(4): 332-336.
  • 4T Mode, S Sakabayashi, M Nagata, A Iwata. Nonlinear Function Generators and chaotic Signal Generators using a Pulse-width Modulation Method[J]. Electron. Lett., 1997, 33(16): 1351-1352.
  • 5T Yang, L O Chua. Chaotic impulse Radio: A novel chaotic secure Communication System[J]. Int. J. Bifurcation Chaos Appl. Sci. Eng.,2000, 10(2): 345-357.
  • 6M T Rossenstein, J J Colins, C J De Luca.Reconstruction Expansion as a Geometry-based Framework for Choosing properDelay Times [J]. Physica D, 1994, 73(1): 82-98.
  • 7M T Rosenstein, J J Collins, C.J.De Luca. A Practical method for Calculating Largest Lyapunov exponents from Small Data Sets[J].Physica D, 1993, 65(2): 117-134.
  • 8John F Lindner, William L Ditto. Removal, suppression, and control of chaos by nonlinear design [J]. Appl Mech Rev, 1995.12( 1):42-48.
  • 9R. N. Madan, Guest Ed.. Chua's Circuit: A Paradigm for Chaos [M].Singapore: World Scientific. 1993.
  • 10V Ya. Kislov, N N Zalogin, Ye A Myasin. Study of Stochastic self-oscillatory Processes in self-exited Oscillators with Delay [J].Radio Eng. Electron. Phys., 1979, 24(6): 92-101.

共引文献9

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部