期刊文献+

用蚁群算法求解旅行商问题 被引量:2

Study on solving traveling salesman problem by using ant colony algorithm
下载PDF
导出
摘要 介绍了一种用于解决复杂优化问题的新的启发式算法——蚁群算法.阐述了该算法的基本原理、算法模型和在旅行商问题中的具体应用过程.研究表明该算法具有并行性,鲁棒性等优良性质. Introduces a solution to the complex optimization problems for the new heuristic algorithm ant colony algorithm. The algorithm describes the basic principles of the model and algorithm in the traveling salesman problem in the specific application process. The results show that the parallel algorithm, robustness, such as the nature of the fine .
作者 高春涛
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2009年第4期493-495,共3页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 蚁群算法 算法模型 旅行商问题 ant colony algorithm algorithm model traveling salesman problem
  • 相关文献

参考文献6

  • 1COLOMI A, DORIGO M, MANIEZZO V. Distributed optimization by ant Colonies[ C]//Proc. 1 st European Coof. Artificial, Pans, France : Elsevier, 1991 : 134 - 142.
  • 2COLOMI A. DORIGO M, MANIEZZO V. An investigation of some properties of an ant algorithm [ C ]//Proceeding of parallel Problem Solving from Nature ( PPSN ), France : Elsevier, 1992 : 509 - 520.
  • 3COLOMI A. DORIGO M, MANIEZZO V, et al. Ant system for job - shop scheduling [ J ]. Belgian Journal of Operations Statistics and Computer Science, 1994,34 ( 1 ) :39 - 53.
  • 4汪镭,吴启迪.蚁群算法在连续空间寻优问题求解中的应用[J].控制与决策,2003,18(1):45-48. 被引量:100
  • 5DORIGO M, CARO G D, GAMBARDELLA L M. Ant algorithms for discrete optimization [ J]. Artificial Life, 1999, 5 (2) :137 -172.
  • 6张纪会,徐心和.一种新的进化算法——蚁群算法[J].系统工程理论与实践,1999,19(3):84-87. 被引量:125

二级参考文献11

  • 1[1]Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the travelling salesman problem[J]. IEEE Trans Evol Comp,1997,1(1):53-66.
  • 2[2]Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans SMC: Part B,1996,26(1):29-41.
  • 3[3]Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[A]. Proc IEEE Int Conf Evol Comp[C]. Piscataway, 1996.622-627.
  • 4[4]Boryczka U, Boryczka M. Generative policies in ant systems for scheduling[A]. 6th European Congr Intell Tech Soft Comp[C]. Bruxelles,1998.1:382-386.
  • 5[5]Boryczka U. Learning with delayed rewards in ant sys-tems for the job-shop scheduling problem[A]. First Int Conf Rough Sets Current Trends Comp[C]. Bruxelles,1998.271-274.
  • 6[6]Gambardella L M, Taillard E D, Dorigo M. Ant colonies for the quadratic assignment problem[J]. J Oper Res Soci,1999,50(2):167-176.
  • 7[7]Maniezzo V,Dorigo M,Colorni A.Algodesk:An experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem[J]. European J Oper Res,1995,81(1):188-204.
  • 8[8]Maniezzo V. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem[J]. Infor J Comp,1999,11(4):358-369.
  • 9[9]Maniezzo V, Colorni A. Ant system applied to the quadratic assignment problem[J]. IEEE Trans Knowl Data Eng,1999,11(5):769-778.
  • 10[10]Leguizamon G, Michalewicz Z. A new version of ant system for subset problems[A]. Proc Congr Evol Comp[C]. Darmstadt,1999.2:1459-1464.

共引文献218

同被引文献22

  • 1李祚泳,钟俊,彭荔红.基于蚁群算法的两地之间的最佳路径选择[J].系统工程,2004,22(7):88-92. 被引量:19
  • 2王俊伟,汪定伟.一种带有梯度加速的粒子群算法[J].控制与决策,2004,19(11):1298-1300. 被引量:45
  • 3EBERHART R C,KENNEDY J.A new optimizer using particle swarm theory[C]//Proc.Sixth International SymPosium on Micro machine and Human Scienee,Nagoya,1995(3):39-43.
  • 4SHI Y,EBERHART R C.A modified particle swarm optimizer[R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,1998.
  • 5SHI Y H,EBERHART R C.Fuzzy adaptive particle swarm optimization[R].Proceedings of Congress on Evolutionary Computation,Seoul,Korea,2001.
  • 6CLERC M.The Swarm and the Queen:Towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation,[S.l.]:[s.n.],1999:1951-1957.
  • 7FAN H Y,SHIY H.Study of vmax of the particle swarm optimization algorithm[D].PurdueSchool of Engineeing and Technology,INPUI,2001.
  • 8ANGELINE P J.Using selection to improve particle swarm optimization[R].IEEE International Conference on Evolutionary Computation,Anchorage,Alaska,1998.
  • 9LOVBJERG M,RASMUSSEN T K.Hybrid particle swarm optimization with breeding and subpopulations[R].IEEE International Conference on Evolutionary Computation,San,Diego,2000.
  • 10SUGANTHAN P N.Particle swarm optimizer with neighborhood operator[C]//Proceedings of Congress on Evolutionary Computation,[S.l.]:[s.n.],1999.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部