期刊文献+

基于帧间扰动相关性的弱小目标提取方法

Extraction Method of Weak and Small Target Based on Correlation of Inner-Frame Disturbance
下载PDF
导出
摘要 帧差分和背景差分技术在运动目标检测方面具有很好的原理性效果;但是对弱小目标图像来说,当目标尺寸和噪声、干扰点尺寸能够比拟,硬件系统和信号噪声的随机性会使差分方法几乎完全失效;在研究差分结果噪声相关性的基础上,提出定点能量积累,避免了能量积累时对目标运动速度的限制;并利用组合扰动排除法,大幅度削弱了帧间相互独立的噪声和杂波干扰;实验结果表明,该方法能够以较低的运算量准确地检测出强噪声干扰和复杂背景下的运动弱小目标,实时性好。 There is good effect in principles in moving target detection by using Frame difference and background difference. However, as to weak-- and-- small target images, randomicity of noises which exist in hardware system and signals will almost invalidate the method of difference when the size of targets is very similar to that of noises and disturbance points. On the foundation of researching the noises correlation among difference results, energy accumulation of immovable points is proposed to avoid the speed limit of moving target while accumulating energy. And by means of combinating disturbance elimation, absolute noises and clutter among frames are weakened greatly. The results of experiment show that this method can detect moving weak--and--small target covered under high noise disturbance and complex background by less computation, and it is of good real--time performance.
出处 《计算机测量与控制》 CSCD 北大核心 2009年第8期1610-1612,共3页 Computer Measurement &Control
基金 国家自然科学基金项目(60575013)
关键词 弱小目标 能量积累 组合扰动 相关性 weak--and--small target energy accumulation combinating disturbance correlation
  • 相关文献

参考文献5

二级参考文献45

  • 1彭嘉雄,彭铁.弱目标检测的图像流法[J].红外与激光工程,1996,25(4):34-40. 被引量:28
  • 2林志谋,卢贵主.一种适合FPGA实现的开平方算法[J].厦门大学学报(自然科学版),2006,45(2):199-201. 被引量:6
  • 3姚国正 刘磊 汪云九.视觉计算理论[M].北京:科学出版社,1988..
  • 4阮迪生 寿天德.神经生理学[M].合肥:中国科技大学出版社,1992..
  • 5[1]H H Nagel. On the estimation of optical flow:Relations between different approaches and some new results[J].Artificial Intelligence,1987;33(3) :299~324
  • 6[2]R Pless,T Brodsky,Y Aloimonos. Detecting independent motion:The statistics of temporal continuity [J].IEEE Trans on Pattern Analysisand Machine Intelligence,2000;22(8):768~773
  • 7[3]Tarak L Gandhi. Image sequence analysis for object detection and segmentation [D].The Pennsylvania State University,2000
  • 8[4]Yalin Xiong,Steven A Shafer. Moment and hypergeometric filters for high precision computation of focus,stereo and optical flow[J].International Journal of Computer Vision, 1997; 22 ( 1 ): 25~59
  • 9[5]Ming Ye. Robust visual motion analysis:piecewise-smooth optical flow and motion-based detection and tracking[D].University of Washington,2002
  • 10[6]J L Barron,S S Beauchemin,D J Fleet. Performance of optical flow techniques[J].International Journal of Computer Vision, 1994; 12( 1 ):43~47

共引文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部