摘要
Retinal degenerative diseases may induce the degeneration of outer retina and in turn,blindness.Nevertheless,due to the maintenance of inner retina,the coding and processing of visual neurons responses are still able to be executed naturally.Therefore,an effective retinal prosthesis device may be developed by mimicking the function of outer retina:transferring the visual light into artificial stimulus and delivering the stimulus to the retina aiming to evoke the neural responses.As two main developing directions for current retinal prosthesis,epiretinal(ER)and subretinal(SR)prosthesis are both undergoing experimental stage and possessing advantages and limitations.Further investigations in power supply,biocompatibility,etc.are still required.Additionally,suprachoroidal transretinal stimulation(STS)and neurotransmitter-induced stimulation as some other alternatives in retinal prosthesis are also considered as promising research directions,although they are not mature enough to be applied commercially,either.
Retinal degenerative diseases may induce the degeneration of outer retina and in turn, blindness. Nevertheless, due to the maintenance of inner retina, the coding and processing of visual neurons responses are still able to be executed naturally. Therefore, an effective retinal prosthesis device may be developed by mimicking the function of outer retina: transferring the visual light into artificial stimulus and delivering the stimulus to the retina aiming to evoke the neural responses. As two main developing directions for current retinal prosthesis,epiretinal (ER) and subretinal (SR) prosthesis are both undergoing experimental stage and possessing advantages and limitations. Further investigations in power supply, biocompatibility, etc. are still required. Additionally, suprachoroidal transretinal stimulation (STS) and neurotransmitter-induced stimulation as some other alternatives in retinal prosthesis are also considered as promising research directions, although they are not mature enough to be applied commercially, either.