期刊文献+

一类mKdV方程的孤波解 被引量:3

Soliton Wave Solutions for a Class of mKdV Equations
下载PDF
导出
摘要 对双曲函数法进行扩展,然后利用一种基于符号计算的代数方法,结合Maple环境中的Epsilon软件包,求解mKdV方程,获得了若干其它方法不曾给出的形式更为丰富的新的显式行波解,其中包括孤波解、三角函数解、双曲函数解和Weierstrass椭圆函数周期解.并用扩展了的双曲函数法求得mKdV方程的新周期波解和孤波解. The algebraic method, based on the symbolic computation, has been applied to study the new traveling wave solutions for mKdV equation by means of Epsilon package in Maple. More new explicit travelling wave solutions are obtained, which contain solitons, triangular periodic, rational, hyperbolic function periodic and Weierstrass ellipse function periodic solution.
出处 《宁夏师范学院学报》 2009年第3期1-4,9,共5页 Journal of Ningxia Normal University
基金 国家自然科学基金资助项目(10361007 10661002) 云南自然科学基金资助项目(2006A0082M)
关键词 MKDV方程 双曲函数法 孤波解 mKdV equation Hyperbola function method Soliton wave solutions
  • 相关文献

参考文献12

  • 1ABLOW ITZ M J, CLARKSON PA. Soliton, nonlinear evolution equations and inverse scattering [ M ]. Cambridge Univ. Press, 1991.
  • 2谷超豪 郭柏灵 李翊神 等.孤立子理论及其应用[M].杭州:浙江科学技术出版社,1990..
  • 3V. B. MATVEEV, A. SALLEM. Daroux transformations and solitons[ M]. Berlin: Springer, 1991.
  • 4R. HIROTA. Exact solution of the Korteweg-de Vries equation formultiple collisions of solitons [ J ]. Phys Rev lett, 1971,27 : 1192-1194.
  • 5楼森岳.推广的Painlevé展开及KdV方程的非标准截断解[J].物理学报,1998,47(12):1937-1945. 被引量:74
  • 6M. L. WANG,Y. B. ZHOU,Z. B. LI. Application of homogeneous balance method to exact solutions of non- linear equations in mathematical physics[ J]. Phys Lett A, 1996, 213: 67-75.
  • 7李志斌,张善卿.非线性波方程准确孤立波解的符号计算[J].数学物理学报(A辑),1997,17(1):81-89. 被引量:114
  • 8傅海明,戴正德.一个(2+1)-维激光方程的孤波解[J].西北师范大学学报(自然科学版),2009,45(1):44-47. 被引量:28
  • 9LI JIBIN, ZHANG LIJUN. Bifurcations of traveling wave solution in generalized Pochhammer-Chree equation [ J]. Chaos, Soitons and Fractals, 2002, 14: 581-593.
  • 10E. G. FAN. Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems [ J ]. Physics Letters A, 2002,300(29) :243-249.

二级参考文献14

共引文献219

同被引文献17

  • 1傅海明,戴正德.(2+1)维Nizhnik-Novikov-Veselov方程组的新精确解[J].山东师范大学学报(自然科学版),2009,24(3):6-8. 被引量:7
  • 2李德生,张鸿庆.非线性演化方程椭圆函数解的一种简单求法及其应用[J].物理学报,2006,55(4):1565-1570. 被引量:22
  • 3LI Y S,MAW X,ZHANG J E.Darboux transformation of classical Boussinesq system and its new solutions[J].Phys Lett A,2000,275:60-66.
  • 4Zakharov V E,Shabat A B.Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[J].Soy Phys JETP,1972,34:62-69.
  • 5Wahlquist H D,Estabrook F B.Backlund transformations for solitons of the Korteweg-de Viru equation[J].Phy Rev Lett,1971,31:1386-1390.
  • 6HIROTA R.Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[J].Phys Rev lett,1971,27:1192-1194.
  • 7FU Haiming,DAI ZHengde.Double Exp-function Method and Application[J].International Journal of Nonlinear Science and Numerical Simulation.2009,10 (7):927-933.
  • 8Lou S Y,Ni G J. The relations among a special type of solutions in some (D + 1 )-dimensional nonlinear equations [ J]. J Math Phys, 1989,30:1614.
  • 9范恩贵.可积系统与计算机代数[M].北京:科学出版社,2003:1-160.
  • 10Rogers C. , Shadwick W. R.. Back|und Transformations and their applica-tion [ M ]. New York : academic Press, 1982 : 1 - 216.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部