期刊文献+

科学数据产品的质量管理基础 被引量:1

Foundations for Quality Management of Scientific Data Products
下载PDF
导出
摘要 科学数据的质量越高,人们可以越快获得更准确的结论,社会更容易从中获益。要改进科学数据的质量,必须清楚地了解科学数据的性质及其产生过程。本文以科学决策过程为背景,提出数据产品和数据质量的定义,其中假设了两种典型的情景:收集观测数据及进行以文献为基础的研究。然后分析与全面质量管理(TQM)理念相关的两个延伸学科——全面信息质量管理(TIQM)和全面数据质量管理(TDQM),以确定科学数据质量的管理是否有别于其他数据和信息的管理。本文提出规划、评估/保障、控制和持续改进的建议,重点放在将质量设计到生产流程中去,而不是依赖大量的检验。 Better scientific data quality means more accurate conclusions being made more quickly, and benefits can be realized by society more readily. To improve scientific data quality, and provide continuous quality assessment and management, the nature of scientific data and the processes that produce it must be articulated. The purpose of this research is to provide a conceptual foundation for the management of data quality as it applies to scientific data products. Definitions for data product and data quality tailored to the context of scientific decision making are proposed, given two typical scenarios: 1 ) collecting observational data, and 2) performing archive -based research. Two relevant extensions to the total quality management (TQM) philoso- phy, total information quality management (TIQM), and total data quality management (TDQM) are then examined to determine. Recommendations for planning, assessment/assurance, control, and continuous improvement are proposed, focusing on designing quality into the production process rather than relying on mass inspection.
出处 《中国科技资源导刊》 2009年第4期28-33,共6页 China Science & Technology Resources Review
基金 国家自然科学基金资助项目(70772021 70831003) 中国博士后科学基金资助项目(20060400077)
关键词 数据中心 数据管理 数据质量 科学数据 符号学 TDQM TIQM TQM data center, data management, data quality, scientific data, semiotics, TDQM, TIQM, TQM
  • 相关文献

参考文献11

  • 1Price R J, G Shanks. Empirical Refinement of a Semiotic Information Quality Framework[C] . In Proceedings of the 38th IEEE Hawaii International Conference on System Sciences, Hawaii, 2005.
  • 2Wang RY, D M Strong Beyond Accuracy:. What Data Quality Means to Data Consumer[J] . Journal of Management Information Systems, 1996, 12:5 -34.
  • 3Redman T C. Data Quality for the Information Age [M]. Norwood, Mass: Artech House, Inc. 1996.
  • 4Loshin D. Enterprise Knowledge Management: The Data Quality Approach[M] . San Diego: MorganKaufmann, 2001.
  • 5Spivak S M, F C Brenner, eds Standardization Essentials: Principles and Practice [M] . New Yorlc Marcel Dekker, Inc. 2001.
  • 6Tsien P Y. Data Management: The Quest for Quality [M]. Accenture White Paper, 2004, August 24.
  • 7English L Improving Data Warehouse and Business Information Quality: Methods for Reducing Costs and Increasing Profits [M]. New York: John Wiley & Sons, Inc. 1999.
  • 8Wang R Y. A Product Perspective on Total Data Quality Management[J] . Communications of the ACM, 1998, 41(2): 58 -65.
  • 9Evans J 1~ W M Lindsay. The Management and Control of Quality[M] . Mason, Ohio: South-Western College Publishing 2005.
  • 10Kujala J, P Lillrank. Total Quality Management as a Cultural Phenomenon[J] Quality Management Journal, 2004, 11(4): 43 - 55.

同被引文献18

  • 1朱如,李庆峰.数据质量管理与企业信息化建设[J].计算机时代,2005(6):31-33. 被引量:19
  • 2http: //www. gov. cn/gjjg,/2005-08/01/content_18608, htm.
  • 3STVILIA B, et al. A framework for information quality assessment [ J]. Journal of the American Society for Information Scienee and Technology, 2007 (12): 1720-1733.
  • 4YAN Zhijun, SUN Baowen, et al. A study on E-government information sharing [ J ]. Advances in Grey Systems Research, 2010: 571-580.
  • 5WONG Z, et al. A proposed revision to the DeLone and McLean's IS success model [ C ]. 2010 International Conference on E-business, 2011.
  • 6CARLSON S, ANDERSON B. What are data? The many kinds of data and their implications for data re-use [ J ]. Journal of Computer-Mediated Communication, 2007 (2) : 15.
  • 7ZIMMERMAN A. New knowledge from old data: the role of standards in the sharing and reuse of ecological data [ J]. Science, Technology, & Human Values, 2008 (5) : 631-652.
  • 8FANIEL I M , JACOBSEN T E. Reusing scientific data: how earthquake engineering researchers assess the reusability of colleagues'data [ J ]. Computer Supported Cooperative Work, 2010 (19): 355-375.
  • 9WALLIS J C, BORGMAN C L, et al. Know thy sensor: trust, data quality, and data integrity in scientific digital libraries [ C ]. European Conference on Research and Advanced Technology for Digital Libraries, Budapest, Hungary, 200: 380- 391.
  • 10Improving the evidence base-EURIM [ EB/OL]. [ 2011-11- 23 ]. http: //www. eurim, org. uk/activities/ig/1106-QoI _ ImprovingTheEvidenceBase. pdf.

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部