期刊文献+

植物对硼元素的吸收转运机制 被引量:15

Mechanisms of Boron Transport in Plants
下载PDF
导出
摘要 硼是植物生长发育所必需的微量元素,但是在世界范围内,土壤中硼含量过高或者过低都会对植物生长产生影响,是农业生产上的主要问题.近来人们对硼的吸收转运机制的研究取得了突破性进展,鉴定了一些硼的转运通道和转运蛋白,例如:NIP5;1、NIP6;1、BOR1和BOR4,并对它们的转运机制有了一些了解.植物在硼缺少的情况下首先通过转运通道NIP5;1把硼吸收到共质体,然后通过转运蛋白BOR1运入中柱;在高硼毒害时,通过转运蛋白BOR4把过多的硼转出植物体,同时在植物中增加糖醇的含量,过表达BOR1或BOR4都能改变植物对硼含量变化的耐受性.因此,对植物中硼吸收转运机制的研究将有利于人们通过生物学手段提高作物对土壤中硼过高或过低的抗性. Boron is an essential nutrient for the normal growth of higher plants. Boron deficiency is a worldwide problem in major grain producing areas that results in the rapid inhibition of plant growth. In recent years, the studies of the molecular basis of boron absorption and transport in plants has advanced significantly, several boron transports and channels were identified, for examples, NIPS; 1, NIP6; 1, BOR1 and BOR4. Under boron restriction, boron is taken into the symplasm mainly through NIPS; 1, forms boric acid to be transported toward steles via plasmodesmata, then exported into stellar apoplasm by BOR1. In the boron-rich soils, BOR4 is important for the directional export of boron from the roots to prevent the accumulation of boron in the xylem or growing cells. The selected or transgenic cultivars with overexpressed transporters BORI or BOR4 or increased sugar alcohol content showed increased boron deficiency or toxicity tolerance. The current study of boron absorption and transport mechanisms in plants has provided clues for the improvement of crop production in boron-deficient or boron-toxic soils by manipulating specific boron transporters or channels.
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2009年第8期702-707,共6页 Chinese Journal of Biochemistry and Molecular Biology
基金 国家自然科学基金项目(No.30328003) 北京市教委科技发展计划面上项目(No.2007CB948200)~~
关键词 植物 NIP5 1 NIP6 1 BOR1 BOR4 plant boron NIP5 1 NIP6 1 BOR1 BOR4
  • 相关文献

参考文献49

  • 1Hu H, Brown P H. Localization of boron in cell wails of squash and tobacco and its association with pectin (Evidence for a structural role of boron in the cell wall)[J]. Plant Physiol, 1994, 105(2) :681-689.
  • 2O'Neill M A, Ishii T, Albersheim P, et al. Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic pelysaccharide[J]. Armu Rev Plant Biol, 2004,55:109-139.
  • 3Iwai H, Hokura A, Oishi M, et al. The gene responsible for borate cross-linking of pectin rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization[J]. Proc Natl Acad Sci U S A, 2006,103(44):16592-16597.
  • 4O'Neill M A, Eberhard S, Albersheim P, et al. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidnpsis growth[J]. Science,2001,294(5543) :846-849.
  • 5Wang Q L, Lu L D, Wu X Q, et al. Boron influeence pollen germination and pollen tube growth in Picea meyer/ [ J ]. Tree Physiol, 2003,2,3(5) :345-351.
  • 6Brown P H, Hu H. Boron uptake in sunflower, squash and cultured tobacco cells: Studies with stable isotope and ICP-MS [J]. Plant Soil, 1993,155/156:147-150.
  • 7Brown PH, Shelp BJ. Boron mobility in plants [ J]. Plant Soil, 1997, 193:85-101.
  • 8Brown PH, Hu H. Phloem mobility of boron is species dependent: Evidence for phloem mobility in sorbitol-rich species [J]. Ann Bot, 1996,77:497-506.
  • 9Brown PH, Hu H. Boron mobility and consequent management in different crops[J]. Better Crops, 1998, 82(2):28-31.
  • 10Brown P H, Bellaloui N, Hu H, et al. Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency[ J]. Plant Physiol, 1999, 110 (1):17-20.

同被引文献274

引证文献15

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部