摘要
双基地雷达的目标定位解是一个非线性优化问题,引入了高斯-牛顿迭代法解非线性最小二乘方程组,为了提高迭代的收敛性和目标位置解的准确性,采用精度最高的一组测量子集单元解算出的定位解作为迭代初始值,并充分利用了所有的观测信息。仿真结果表明,采用该种算法迭代次数少,比简化加权最小二乘算法(SW LS)有更准确的目标定位解,从而使得整个受控区域内的定位精度有较大提高,定位性能得到优化和改善。
The target location in bistatic radar is a nonlinear optimize problem, the nonlinear least square estimation and its Gauss-Newton iterative algorithm are concerned,In order to improve iterative astringency and target location's veracity,the paper selects a location's value which is close to the truth value as iterative beginning and utilizes all the observation.The simulation shows this algorithm has more iterative speed and accurate location's value than SWLS,so the location's accuracy in whole detected area is greatly advanced and the capability of target location is optimized.
出处
《火力与指挥控制》
CSCD
北大核心
2009年第8期101-104,共4页
Fire Control & Command Control
关键词
目标定位
高斯-牛顿迭代法
双基地雷达
定位精度
target location,Gauss-Newton iterative algorithm,bistatic radar,location accuracy