期刊文献+

车载前视GPSAR浅地表杂波特性分析 被引量:1

Analysis of Shallow Surface Ground Clutter Characteristics Based on Vehicle-Mounted Forward-Looking GPSAR
下载PDF
导出
摘要 车载前视地表穿透合成孔径雷达(GPSAR)能够穿透地表获得浅埋目标图像,可用于较大面积区域的快速探测。目前制约GPSAR浅埋目标检测实用化的主要障碍是探测环境复杂而带来的虚警过高。而对GPSAR浅地表杂波特性分析是指导检测器设计进而提高检测性能的前提。文中针对车载前视GPSAR图像杂波局部与整体统计特性不一致的情况,给出一种基于多维概率密度函数的GPSAR图像浅地表杂波特性分析方法。该方法揭示了局部图像与整体图像的浅地表杂波特性的区别与联系。可从理论上解释车载前视GPSAR图像浅地表杂波的实际统计结果,为指导检测器设计和提高浅埋目标检测性能奠定了基础。 Vehicle-Mounted Forward-Looking Ground Penetrating Synthetic Aperture Radar (VMFL-GPSAR) which can penetrate the ground surface and get subsurface targets image is widely used for fast detection of large area. At present, the limitation of detection is high false-Mann which is brought by the complex environment. Aanalysis of clutter characteristics the guidance of desig- ning detector and the precondition of improving the performance of detector. This article presents a novel method based on muhidi- mensional probability measure function for the statistics of image between the whole and the local, which shows their relationship and difference. This method can explain the practical phenomenon from theory, and lays a foundation for designing detector and improving the performance of detection.
出处 《现代雷达》 CSCD 北大核心 2009年第8期39-42,共4页 Modern Radar
关键词 车载前视GPSAR 参数空间 多维概率密度函数 VMFL-GPSAR parameter space multidimensional probability measure function
  • 相关文献

参考文献1

  • 1Maria S. Greco, Fulvio Gini. Statistical analysis of high-resolution SAR ground clutter data [ J ]. IEEE Transactions on Geosciences and Remote Sensing, 2007, 45 ( 3 ) :566 - 575.

同被引文献17

  • 1赵一兵,王荣本,李琳辉,金立生,郭烈.基于激光雷达的无人驾驶车前方障碍物检测[J].交通与计算机,2007,25(2):9-13. 被引量:15
  • 2The self-driving car logs more miles on new wheels[ EB/OL]. http ://googleblog. blogspot, hu/2012/08/ the-self-driving-ear- logs-more-miles-on, html.
  • 3Barbe S, Krapez J, Louvet Y. Performance modeling and assessment of infrared-sensors applicable for TALOS project UGV as a function of target/background and environmental conditions [ C ]//Proceedings of SPIE, Infrared Imaging Systems : Design, Analysis, Modeling, and Testing XXIII, Baltimore, Maryland, USA, 2012.
  • 4Choi J, Lee J, Kim D, et al. Environment-detection-and- mapping algorithm for autonomous driving in rural or off-road environment [ J ]. IEEE Transactions on Intelligent Transportation System, 2012,13 ( 2 ) :974 - 982.
  • 5Mitr A K, Westbrook L, Corgan J, et al. Integrated RF modules for cooperative UGV/UAV tandems[ C ]//Proceedings of SPIE, Unmanned Systems Technology X, Orlando, Florida, USA, 2008.
  • 6Nguyen L, Wong D, Ressler M, et al. Obstacle avoidance and concealed target detection using the army research lab ultra- wideband synchronous impulse reconstruction (UWB SIRE ) forward imaging radar [ C ]//Proceedings of SPIE, Detection and Remediation Technologies for Mines and Mine-like Targets XII , Orlando, Florida, USA, 2007.
  • 7Park S J, Ross J A, ShiresD R,et al. Hybrid core acceleration of UWB SIRE radar signal processing [ J ]. IEEE Transactions on Parallel and Distributed System, 2011,22 (1) :46 -57.
  • 8Sun S G, Cho B, Park G C, et al. UWB forward imaging radar for an unmanned ground vehicle [ C ]//Proceedings of 2011 3nd International Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, Korea. 2011:629-632.
  • 9Wang J, Song Q, Zhou Z M. Preliminary results of VFGPVR 3D imaging of shallow buried targets [ C ]//Proceedings of 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, Korea, 2011:663 - 666.
  • 10Rosen P A, Hensley S, Joughin I R, et al. Synthetic aperture radar interferometry [ J ]. Proceedings of IEEE,2000,88 ( 3 ) : 333 - 382.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部