摘要
通过数值模拟试验,分析了几种宿主-寄生物相互作用的差分方程模型随参数变化时表现出的复杂动态行为以及行为所发生的质的变化.结果表明:各种类型的模型尤其是聚集效应模型都包括多种复杂的动态:Hopf分支、倒转Hopf分支、倍周期分支、倒转倍周期分支(周期倍减)、草叉分支、倒叉分支、吸引子突变(危机),含有窄、宽周期窗的混沌段、多吸引子共存、阵发混沌及超变换行为.这些非单一的复杂动态对了解自然界种群的动态规律有重要意义.
The dynamic complexities of host-parasitoid models described by difference equations were qualitatively analyzed. Especially, we confined our attention on the behavioral responses made by parasitoids whose attacks become more aggregated to the host. The dynamic complexities of these models include Hopf bifurcation, Hopf bifurcation reversal, period-doubling bifurcation, period-halving, attractor crises, chaotic bands with narrow or wide periodic windows, intermittent chaos, and supertransient behavior. It is concluded that non-unique dynamic, associated with extremely complex structure of the basin boundaries, can have a profound effect on our understanding of the dynamical processes of nature.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第4期53-59,共7页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金项目(30700100)
教育部社科基金项目(06JC790020)
甘肃省科技支持重点项目(0708NKCA121)
西北民族大学中青年科研基金项目(XBMU-2008-BD-65)
关键词
动态复杂性
混沌
分岔图
HOPF分支
周期倍减
dynamic complexity
chaos
bifurcation diagram
Hopf bifurcation
period-halving