期刊文献+

形式三角矩阵环上的广义内射模(英文) 被引量:2

Generalized injective modules over formal triangular matrix rings
下载PDF
导出
摘要 设T是形式三角矩阵环,U和V是右T-模.引入f-单相对内射模、N-生成相对内射模和弱单相对内射模的概念,并借助于与Mod-T等价的范畴Ω,研究了形式三角矩阵环T上的f-相对内射模、N-生成相对内射模和弱相对内射模的有关性质.对右T-模U和V,得到U是f-V-内射模、N-生成V-内射模和弱V-内射模的充分条件. Let T be a formal triangular matrix ring, U and V be right T-modules, we introduced a concept of f-simple relative injectivity, R-generated relative injectivity and weakly simple relative injectivity of modules over T, and studied the f-relative injective, R-generated relative injective and weakly relative injective by means of the category V, some sufficient conditions were obtained V-injective Ω being equivalent to Mod-T. For right T-modules U and for U to be f-V-injective, R-generated V-injective or weaklyKey V-injective.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期105-111,117,共8页 Journal of Lanzhou University(Natural Sciences)
基金 Supported by the National Natural Science Foundation of China(10671061) the Natural Science Foundationof Beijing(1092002)
关键词 三角形式矩阵环 f-相对内射模 N-生成相对内射模 弱相对内射模 formal triangular matrix ring f-relative injective module R-generated relative injective module weakly relative injective module
  • 相关文献

参考文献12

  • 1GOODEARL K R. Ring theory[M]. New York: Marcel Dekker, 1976: 103-130.
  • 2MULLER M. Rings of quotients of generalized matrix rings[J]. Comm Algebra, 1987, 15(10): 1 991-2 015.
  • 3HANGHANY A, VARADARAJAN K. Study of modules over formal triangular matrix rings[J]. J of Pure and Applied Algebra, 2000, 147: 41-58.
  • 4HANGHANY A, VARADARAJAN K. Study of formal triangular matrix rings[J]. Comm Algebra, 1999, 27(11): 5 507-5 525.
  • 5HANGHANY A. Injective conditions over a formal triangular matrix ring[J]. Arch Math, 2002, 78:268-274.
  • 6GREEN E L. On the representation theory of rings in matrix form[J]. Pacific J Math, 1982, 100(1): 123-138.
  • 7LAYED M. On f-injective modules[J]. Arch Math, 2002, 78: 345-349.
  • 8LAM T Y. Lecture on modules and rings[M]. Berlin: Springer-Verlag, 1998: 207-526.
  • 9GOODEARL K R, WARFIELD R B. An introduction to non-commutative noetherian rings[M]//London Math Soc Student Texts 61. Cambridge: Cambridge University Press, 2004, 1-15.
  • 10NICHOLSON W K, PARK J K, YOUSIF M F. On simple-injective rings[J]. Algebra Colloquium, 2002, 9(3): 259-264.

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部