期刊文献+

一类高维Liёnard型系统周期解的存在性

Existence of periodic solutions for a class Liёnard type system in R^N
下载PDF
导出
摘要 利用重合度理论中的新Borsuk定理,得到了高维Liёnard型系统u″(t)+ddt F(u(t))+G(u(t))=e(t)存在周期解的充分条件.将线性变换引入先验估计,把F和G要求的非退化特征推广到了具有一定退化性质的情形. Using the generalized Borsuk theorem from coincidence degree theory, some sufficient conditions for the existence of a Liёnard type system in R^N of the form u″(t)+d/dt △↓F(u(t))+△↓(u(t))=e(t) were proposed. By introducing linear transformation into the a priori estimation, the non-degeneration characteristics required by F and G were generalized in order to be degenerated.
机构地区 河海大学理学院
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期483-486,共4页 Journal of Hohai University(Natural Sciences)
基金 国家自然科学基金(10871059)
关键词 周期解 Liёnard型系统 重合度 periodic solution Liёnard type system coincidence degree
  • 相关文献

参考文献9

  • 1DING Wei-yue. On the existence of periodic solutions for Lienard systems[J]. Acta Math Sinica, 1982,25: 627-632.
  • 2CAC N P. Periodic solutions of a second order nonlinear systems[ J]. J Math Anal, Appl, 1997,214 (1) : 219-232.
  • 3PENG Shi-guo,XU Zhi-ting. On the existence of periodic solutions for a class of p-laplacian system[J]. J Math Anal Appl, 2007,325 (1) : 166-174.
  • 4TANG Yi, LI Ya-qiong. New results of periodic solutions for a kind of duffing type p-laplacian equation[ J]. Math Anal Appl, 2008,340 (2) : 1380-1384.
  • 5ZHANG Fu-xing, LI Ya. Existence and uniqueness of periodic solutions for a kind of duffing type p-laplacian equation[J]. Nonlinear Analysis: Real World Applications, 2008,9 (3) : 985-989.
  • 6AMSTER P, NAPOLI P D. Landesman-Lazer type conditions for a system of p-laplacian like operators [ J]. Math Anal Appl, 2007,326 (2) : 1236-1243.
  • 7CIEUTAT P. Almost periodic solutions of forced vectorial Lienard equations[ J]. J Diffenential Equations, 2005,209(2) : 302-328.
  • 8GAO Fa-bao, LU Shi-ping. New results on the existence and uniqueness of periodic solutions for Lienard type p-laplacian equation[J]. Journal of the Franklin Institute, 2008,345 ( 4 ) : 374-381.
  • 9GAINES R E, MAWHIN J. Coincidence degree and nonlinear differential equations[M]. Berlin: Springer, 1977:31-32.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部