期刊文献+

基于分数阶Wigner分布的机械故障诊断方法研究 被引量:4

Fault Diagnosis of Machinery Based on Fractional-Order Wigner Distribution
下载PDF
导出
摘要 为采用分数阶Wigner分布的机械故障诊断新方法,讨论了分数阶Wigner分布中最优分数阶的选择。仿真研究表明,分数阶Wigner分布优于传统的Wigner分布,分数阶Wigner分布能有效地抑制交叉项干扰。将提出的方法应用到轴承故障诊断中,实验结果验证了提出的方法的有效性。 The definition and algorithm of fractional-order Wigner distribution is introduced. A new machinery fault diagnosis method based on the fractional-order Wigner distribution is proposed. The choice of the optimal fractional order is discussed. The simulation result shows that the fractional-order Wigner distribution is superior to the traditional Wigner distribution, and can effectively suppress the interference from the intersect terms in the Wigner distribution. Finally, the proposed method is successfu-lly applied to the fault diagnosis of bearings. Experimental result also verifies the validity of the proposed method.
出处 《噪声与振动控制》 CSCD 北大核心 2009年第4期46-49,共4页 Noise and Vibration Control
基金 国家自然科学基金(50775208) 河南省教育厅自然科学基金(2006460005 2008C460003)
关键词 振动与波 分数阶FOURIER变换 分数阶Wigner分布 故障诊断 vibration and wave fractional-order Fourier transform fractional-order Wigner distribution fault diagnosis
  • 相关文献

参考文献6

  • 1Hlawatsch F , Boudreaux-Bartels G F. Linear and quadratic time-frequency signal representations [ J ]. IEEE Signal Processing Magzine, 1992, 9(2): 21 -67.
  • 2Namias V. The fractional order Fourier transform and its application to quantum mechanics[J ]. J Inst Math Appl, 1980 (25) :241-265.
  • 3Luis B A , The fractional fourier transform and time-frequency representations [ J ]. IEEE Trans. Signal Processing, 1994, 42 (11) : 3084 -3091.
  • 4李靖,王树勋,汪飞.基于分数阶傅里叶变换的chirp信号时频分析[J].系统工程与电子技术,2005,27(6):988-990. 被引量:31
  • 5Alieva T, Bastiaans M J. , On fractional fourier transform moments [ J]. IEEE Signal Processing Letters. , 2000, 11(7 ): 320-323.
  • 6Dr. Kenneth A. Loparo. Bearing Data Center. Case Western Reserve University.

二级参考文献8

  • 1孙晓兵,保铮.分数阶Fourier变换及其应用[J].电子学报,1996,24(12):60-65. 被引量:29
  • 2Cohen L. time-frequency analysis[M]. Englewood Cliffs, NJ:Prentice-Hall, 1995.
  • 3Hlawatsch F, Boudreaux-Bartels G F. Linear and quadratic timefrequency signal representations[J]. IEEE Signal Process. Mag. ,1992, 9(2): 21-67.
  • 4Luis B A, The fractional fourier transform and time-frequency representations[J]. IEEE Trans. Signal Processing, 1994, 42(11):3084 - 3091.
  • 5Ashok Narayanan V, Prabhu K M M. The fractional fourier transform: theory, implementation and error analysis[J]. Elsevier Microprocessors and Microsystems, 2003, 27: 511- 521.
  • 6Alieva T, Bastiaans M J. On fractional fourier transform moments[J]. IEEE Signal Process. Lett . , 2000, 7:320 -323.
  • 7Bastiaans M J, Alieva T, Stankovic L J. On rotated time-frequency kernels[J]. IEEE Signal Process. Lett., 2002, 9(11): 378-381.
  • 8邹红星,周小波,李衍达.在不同噪声背景下Dopplerlet变换在信号恢复中的应用[J].电子学报,2000,28(9):1-4. 被引量:13

共引文献30

同被引文献44

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部