期刊文献+

无重叠视域多摄像机的数据关联算法 被引量:2

Data association algorithm of multiple non-overlapping cameras
下载PDF
导出
摘要 大范围的监控通常会用到多个没有重叠视域的摄像机,目标的出现在时间和空间上都是离散的,摄像机间的目标关联是实现大范围的目标跟踪的关键问题。提出一种基于权重二部图的关联策略,以目标为节点,结合时间约束和空间约束构造边,目标的相似度为边的权重,通过求取二部图的最大权匹配得到最优关联结果。针对刚体目标提出一种LICS特征用于计算目标间的相似度,该特征对光照和目标姿态变化都不敏感。采用真实视频和仿真方法对算法进行实验,实验结果表明有好的关联效果。 Muhiple non-overlapping cameras are required in the surveillance of wide areas, and the observations of objects are often widely separated in time and space. The key problem of tracking objects in wide areas is the data association of non-overlapping cameras. A data association algorithm based on the weighted bipartite graph was proposed. The objects were the graph nodes, the graph edges were constructed by the temporal and spatial constraints, the weights of edges was the similarity of objects, and the association result was the maximum weight matching of the bipartite graph. A feature named Logarithm Illuminance Contrast Statistic (LICS) was proposed for rigid objects to calculate the similarity of objects, which was non-sensitive to the change of illumination and posture. Experiments with real videos and simulation validate the proposed approach.
出处 《计算机应用》 CSCD 北大核心 2009年第9期2378-2382,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60705013 60773023) 中国博士后科学基金资助项目(20070410977)
关键词 非重叠摄像机 数据关联 目标跟踪 加权二部图 non-overlapping camera data association object tracking weighted bipartite graph
  • 相关文献

参考文献16

  • 1MOTAMED C, WALLART O. A temporal fusion strategy for crosscamera data association [ J]. Pattern Recognition Letters, 2007, 28 (2) : 233 - 245.
  • 2CHENG E D, PICCARDI M. Matching of objects moving across disjoint cameras [ C]// Proceedings of the 2006 IEEE Intemational Conference on Image Processing. Washington, DC: IEEE Computer Society, 2006:1769 - 1772.
  • 3PICCARDI M, CHENG E D, Track matching over disjoint camera views based on an incremental major color spectrum [ C]//Proceedings of the 2005 IEEE International Conference on Advanced Video and Signal based Surveillance. Washington, DC: IEEE Computer Society, 2005: J47- 152.
  • 4BOWDEN R, KAEWTRAKULPONG P. Towards automated wide area visual surveillance: Tracking objects between spatially separated, uncalibrated views [ J]. IEE Proceedings - Vision, Image and Signal Processing, 2005, 152(2) : 213 -224.
  • 5JAVED O, SHAFIQUE K, SHAH M. Appearance modeling for tracking in multiple non-overlapping cameras [ C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005:26-33.
  • 6GILBERT A, BOWDEN R. Tracking objects across cameras by incrementally learning inter-camera colour calibration and patterns of activity [ C]//Proceedings of 2006 European Conference Computer Vision. Berlin: Springer-Verlag, 2006: 7- 13.
  • 7ARTH C, LEISTNER C, BISCHOF H. Object reacquisition and tracking in large-scale smart camera networks [ C]// Proceedings of the 1st ACM/IEEE International Conference on Distributed Smart Cameras. Washington, DC: IEEE Computer Society, 2007: 156- 163.
  • 8GUO Y L, SAWHNEY H S, KUMAR R, et al. Robust object matching for persistent tracking with heterogeneous features [ C]// Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. Washington, DC: IEEE Computer Society, 2005:81-88.
  • 9SHAN Y, SAWHNEY H S, KUMAR R. Vehicle identification between non-overlapping cameras without direct feature matching [ C]//ICCV'05: Proceedings of the 10th IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2005:378-385.
  • 10SONG B, ROY-CHOWDHURY A K. Stochastic adaptive tracking in a camera network [ C]// ICCV'07: Proceedings of the I hh International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2007:1 -8.

二级参考文献12

  • 1胡士强,敬忠良,梁国壮,郭立炜.场景监视与理解研究新进展[J].河北科技大学学报,2005,26(1):58-63. 被引量:2
  • 2O Javed,Z Rasheed,K Shafique et al.Tracking Across Multiple Cameras With Disjoint Views[C].In:IEEE International Conference on Computer Vision, Nice, 2003 : 952-957
  • 3O Javed,Z Rasheed,O Alatas et al.KnightM:A Real Time Surveillance System for Multiple Overlapping and Non-Overlapping Cameras[C]. In:Invited paper in IEEE conference on Multimedia and Expo,Special Session on Multi-Camera Surveillance Systems,Bahimore,2003
  • 4O Javed,M Shah.Tracking and object classification for automated surveillance[C].In:Proceedings of ECCV,2002
  • 5D Comaniciu,V Ramesh,P Meer.Real-time tracking of nonrigid objects using mean shift[C].In:IEEE International Conference on Computer Vision and Pattern Recognition(CVPR),Hilton Head Island,SC, 2000:142-151
  • 6O Javed,K Shafique,M Shah.Appearance Modeling for Tracking in Multiple Non-overlapping Cameras[C].In:IEEE International Conference on Computer Vision and Pattern Recognition(CVPR),San Diego,2005: 20-26
  • 7I Junejo,O Javed,M Shah.Multi feature path modeling for video surveillance[C].In: 17th conference of the International Conference on Pattern Recognition (ICPR), Cambridge, 200d. :716-719
  • 8D Makris,T Ellis.Path detection in video surveillance[J].Image and Vision Computing,2002 ;20(12) :895-903
  • 9Liang Wang,Weiming Hu,Tieniu Tan.Recent Developments in Human Motion Analysis[J].Pattem Recognition,2003;36(3):585-601
  • 10R Collins,A Lipton,H Fujiyoshi et al.Algorithms for cooperative multisensor surveillance[C].In : Proceedings of the IEEE, 2001 ; 89 (10) : 1456-1477

共引文献6

同被引文献16

  • 1贾冬勤,王洪元,程起才.基于自适应阈值Canny算子的视频文本定位方法[J].常州大学学报(自然科学版),2014,26(1):47-51. 被引量:2
  • 2DUDA R, HART P, STORK D. Pattern classification and scene analysis[ M]. New York: Wiley, 2000.
  • 3WAND M P, JONES M C. Kernel smoothing [ M ] . New York: Chapman & Hall, 1994.
  • 4LI Q, RACINE J. Nonparametric estimation of distributions with categorical and continuous data[ J]. Journal of Muhivariate Analysis, 2003, 86(2): 266-292.
  • 5TIPPING M E, BISHOP C M. Probabilistic principal component analysis[ J]. Journal of the Royal Statistical Society, 1999, 61 (3) : 611 -622.
  • 6JAVED O, SHAFIQUE K, SHA M. Appearance modeling for tracking in multiple cameras [ C]// CVPR'05. Washington, DC: IEEE Computer Society, 2005:26 -33.
  • 7lAMBERT C G, HARR1NGTON S E, HARVEY C R, et al. Efficient online nonparametric kernel density estimation[ J], Algorithmica, 1999, 25(1) : 37 -57.
  • 8CAI Y H, HUANG K Q, TANG T N. Human appearance matching across multiple non-overlapping cameras [C]. Tampa; IEEE Computer Society, 2008.
  • 9ZHAO R, OUYANG W L, WANG X G. Unsupervised Salience Learning for Person Re-identification [ C]. Portland IEEE Computer Society, 2013.
  • 10JAVED O, SHAFIQUE K. Modeling inter-camera space-time and appearance relationships for tracking across non-overlapping views [J]. Computer Vision and Image Understanding. 2008, 109(2) : 146-162.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部