期刊文献+

必要规则对分类影响的研究

Research of necessary rules' influence on classifying
下载PDF
导出
摘要 基于规则分类方法的主要计算依据是形如"A→C"的规则(称为充分规则)及其置信度。其中:"A"代表数据集中决策属性取值的集合,"C"代表某个类标号。那么,形如"C→A"的规则(称为必要规则)是否可以在分类算法中起到积极的作用呢?依据规则分类方法原理设计了简单的实验,实验只考虑单个决策属性的不同取值与类之间的关联。根据实验目标,分类测试采用了两种方法:方法1只考虑充分置信的影响;方法2考虑充分置信和必要置信的影响。通过在几个典型的分类集上测试,结果表明:在分类计算时适当利用必要规则置信度可以提高分类精度。 The computing gist of algorithms based on rules involves the rules like "A → C" and their confidences. Here, "A" represents the set of decision attributes and their values, and "C" represents a kind of class label. Can the rules like "C→A" act positively in classifying algorithms? A simple experiment was designed, which considered the associations between single attribute values and class label. Two testing methods were made according to the experiment goals. By the first method, confidences of "A→ C" were used. By the second method, the confidences of both "A → C" and "C→A" were used. The experiments were made on several typical classifying data sets. The results show the higher classifying precision by using the double confidences.
出处 《计算机应用》 CSCD 北大核心 2009年第9期2499-2501,2526,共4页 journal of Computer Applications
关键词 分类 置信度 充分规则 必要规则 classifying confidence sufficient rule necessary rute
  • 相关文献

参考文献7

  • 1QUINLAN J R. C4.5: Programs for machine learning [M]. Los Altos: Morgan Kaufmann, 1993.
  • 2LIU B, HSU W, MAY. Integrating classification and association rule mining [ C]// Proceedings of the 4th Intemational Conference on Knowledge Discovery and Data Mining. New York: [ s. n. ], 1998:80 - 86.
  • 3DOMINGOS P, PAZZANIL M. Beyond independence: Conditions for the optimality of the simple Bayesian classifier [ C]// Proceedings of the 13th International Conference on Machine Learning. San Francisco: [s.n.], 1996: 105-112.
  • 4邓维斌,黄蜀江,周玉敏.基于条件信息熵的自主式朴素贝叶斯分类算法[J].计算机应用,2007,27(4):888-891. 被引量:16
  • 5BLAKE C L, MERZ C J. UCI machine learning repository of machine learning databases [ EB/OL]. [ 2009 -01 - 05]. http://archive, ics. uci. edu/ml/.
  • 6高嘉伟,梁吉业.非平衡数据集分类问题研究进展[J].计算机科学,2008,35(4):10-13. 被引量:16
  • 7HETTICH S, BAY S D. The UCI KDD archive [ EB/OL]. [2009 - 01 -05]. http://kdd, ics. uei. edu.

二级参考文献34

  • 1郑恩辉,李平,宋执环.不平衡数据知识挖掘:类分布对支持向量机分类的影响[J].信息与控制,2005,34(6):703-708. 被引量:17
  • 2谢纪刚,裘正定.非平衡数据集Fisher线性判别模型[J].北京交通大学学报,2006,30(5):15-18. 被引量:15
  • 3PAWLAK Z.Rough set[J].International Journal of Computer and Information Sciences,1982,11 (5):341:356.
  • 4YIN DS,WANG GY,WU Y.A Self-learning Algorithm for Decision Tree Pre-pruning[A].Proceedings of the Third International Conference on Machine Learning and Cybernetics[C].Shanghai,2004.2140 -2145.
  • 5CHICKERING DM.Learning Bayesian networks is NP-complete[A].Learning from Data:AI and Statistics[C].New York,1996.121 -130.
  • 6LANGLEY P,SAGE S.Induction of selective Bayesian classifiers[A].Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence[C].Morgan Kaufmann,1994.399 -406.
  • 7HUANG J,LU JJ,LING CX.Comparing Naive Bayes,Decision Trees and SVM with AUC and Accuracy[A].Proceedings of the Third IEEE International Conference on Data Mining(ICDM'2003)[C].Melbourne,Florida,USA.2003.
  • 8FRIEDMAN N,GEIGER D,GOLDSZMIDT M.Bayesian Network Classifiers[J].Machine Learning,1997,29:131-163.
  • 9HARRY Z,SHENG SL.Learning Weighted Naive Bayes with Accurate Ranking[A].Fourth IEEE International Conference on Data Mining (ICDM'04)[C].Brighton,UK.2004.567-570.
  • 10WANG GY,ZHENG Z,WU Y.RIDAS-A Rough Set Based Intelligent Data Analysis System[A].First IEEE International Conference On Machine Learning and Cybernitics(ICMLC2002)[C].Beijing.2002.646-649.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部