期刊文献+

改进的快速DBSCAN算法 被引量:24

Improved fast DBSCAN algorithm
下载PDF
导出
摘要 针对DBSCAN算法时间性能低效的问题,分析快速聚类过程中丢失对象的原因,提出一种新的改进算法IF-DBSCAN。该算法在不丢失对象的基础上,通过选取核心对象邻域中的代表对象来扩展类,从而减少邻域查询次数,提高了算法的时间性能。实验结果表明,IF-DBSCAN算法是正确和高效的。 The time performance of Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is inefficient. Concerning this problem, the authors analyzed the reasons of losing object in the process of fast clustering, and proposed a new Improved Fast DBSCAN (IF-DBSCAN) algorithm. On the basis of not losing data object, this algorithm expanded a category by Selecting representative objects from the neighborhood of core data object, so that it reduced the number of regional inquiries and improved the algorithm's time performance. The experimental results show that IF-DBSCAN algorithm is correct and efficient.
出处 《计算机应用》 CSCD 北大核心 2009年第9期2505-2508,共4页 journal of Computer Applications
关键词 聚类 DBSCAN算法 邻域 核心对象 clustering DBSCAN algorithm neighborhood core object
  • 相关文献

参考文献8

  • 1CHEN M S, HAN J H, YU P S. Data mining: An overview from a database perspective [ J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 866 -883.
  • 2KAUFAN L, RPUSSEEUW P J. Finding groups in data: An introduction to cluster analysis [ M]. New York: John Wiley & Sons, 1990.
  • 3ESTER M, KRIEGEL H P, XU X W. Knowledge discovery in large SPATIAL database: Focusing techniques for efficient class identification [ C]//Proceedings of the 4th International Symposium on Advances in Spatial Databases, LNCS 951. London: Springer-Verlag, 1995:67-82.
  • 4ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial database with noise [ C]//KDD - 96: Proceedings of the 2nd International Conference on Knowledge Discovering and DataMining. Portland, Oregon: [ s. n.], 1996:226-231.
  • 5GUHA S, RASTOGI R, SHIM K. CURE: An efficient clustering algorithm for large databases [ C]// Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998:73-84.
  • 6AGRAWAL R, GEHRKE J, GUNOPOLOS D, et al. Automatic subspace clustering of high dimensional data for data mining application [C]// Proceedings of the ACM SIGMOD International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001:331-340.
  • 7ALEXANDROS N, YANNIS T, YANNIS M. C2P: Clustering based on closest pairs [ C]//Proceedings of the 27th International Conference on Very Large Databases. Roma: Morgan Kaufmann Publishers, 2001:331-340.
  • 8周水庚,周傲英,曹晶,胡运发.一种基于密度的快速聚类算法[J].计算机研究与发展,2000,37(11):1287-1292. 被引量:89

二级参考文献4

  • 1Zhang W,Proc 23rd VL DB Conf,1997年,186页
  • 2Chen M S,IEEE Trans Knowledge Data Engineering,1996年,8卷,6期,866页
  • 3Zhang T,Proc ACM SIGMOD Int Conf on Management of Data,1996年,73页
  • 4Ng R T,Proc 20th VLDB Conf,1994年,144页

共引文献88

同被引文献184

引证文献24

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部