期刊文献+

基于单幅全向图像的空间水平直线定位新方法 被引量:1

Novel method of space horizontal line localization based on single catadioptric omnidirectional image
下载PDF
导出
摘要 研究了在没有先验知识的前提下,基于单幅全向图像定位空间水平直线的问题。在已有算法的基础上,分析和推导了空间水平直线在全向成像系统中的成像特点,指出基于直线在全向图中的两个像点即可重建该水平直线,并相应地提出了一种基于"主像点/非主像点"的空间水平直线定位算法。试验表明,在不同的像点提取精度下,对于不同空间水平直线,本方法均能取得较好结果。 Space horizontal line localization without prior knowledge from a single omnidirectional image was exploited. Based on the existing approaches of straight line localization, the authors demonstrated that, for symmetric non-central eatadioptric systems, the equation of a 3D horizontal line could be estimated using only two points extracted from a single image of the line by exploiting the characteristics of horizontal line image in catadioptric system, and meanwhile a horizontal line reconstruction algorithm based on main-point image and non-main-point image was proposed. The experimental results justify that, under different precision of image point extraction, compared to present approaches of line reconstruction, the proposed method is constantly more efficient.
出处 《计算机应用》 CSCD 北大核心 2009年第9期2593-2595,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60705013 60872150)
关键词 单幅图像 直线定位 三维重建 折反射全向成像 single image horizontal line localization 3D reconstruction catadioptric omni-directional imaging
  • 相关文献

参考文献10

  • 1KIM J C, LEE K M, CHOI B T, et al. A dense stereo matching using two-pass dynamic programming with generalized ground control points [ C]// Proceedings of the 2005 International Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005:1075 - 1082.
  • 2KOLMOGOROV V, ZABIN R. What energy functions can be minimized via graph cuts? [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2) : 147 - 159.
  • 3KLAUS A, SORMANN M, KARNER K. Segment-based stereo matching using belief propagation and a self-adapting dissimiJarity measure[ C]//Proceedings of the 18th International Conference on Pattern Recognition. Washington, DC: IEEE Computer Society, 2006:15 - 18.
  • 4LANMAN D, WACHS M, TAUBIN G, et al. Reconstructing a 3D line from a single catadioptric image [ C]// Proceedings of the 3rd Intemational Symposium on 3D Data Processing, Visualization, and Transmission. Washington, DC: IEEE Computer Society, 2006:89 -96.
  • 5CAGLIOTI V, GASPARINI S, TADDEI P. Methods for space line localization from single catadioptric images new proposals and comparison [ C I// Proceedings of 2007 International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2007: 1-6.
  • 6CAGLIOTI V, GASPARINI S. On the localization of straight lines in 3D space from single 2D images [ C]//Proceedings of 2005 International Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005:1129-1134.
  • 7PINCIROLI C, BONARINI A, MATrEUCCI M. Robust detection of 3D scene horizontal and vertical lines in conical catadioptric sensors [ EB/OL]. [ 2009 - 01 - 11 ]. http://iridia, ulb. ac. be/- cpinciroli/ pdf/ pinciroliO5 Robost. pdf.
  • 8BAKER S, NAYAR S K. A theory of single-viewpoint catadioptric image formation [ J]. International Journal of Computer Vision, 1999, 35(2) : 175 - 196.
  • 9FIALA M, BASU A. Panoramic stereo reconstruction using non-SVP optics [ J]. Computer Vision and Image Understanding, 2005, 8 (3) : 363 -397.
  • 10FIALA M, BASU A. Hough transform for feature detection in panoramic images [ J]. Pattern Recognition Letters, 2002, 23 (14) : 1863 - 1874.

同被引文献8

  • 1CHAM T-J, CIPTADI A, TAN W-C et al. Estimating camera pose from a single urban ground-view omnidirectional image and a 2D building outline map[ C]//CVPR 2010: IEEE International Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2010:366 -373.
  • 2CHEN L-C, TEO T-A, HSIEH C-H, et al. Reconstruction of building models with curvilinear boundaries from laser scanner and aerial imagery [ C]// PSIVT: Pacific-Rim Symposium on Image and Video Technology, LNCS4319. Berlin: Springer-Verlag, 2006:24-33.
  • 3LEE S C, NEVATIA R. Automatic integration of facade textures into 3D building models with a projective geometry based line clustering [J]. Computer Graphics Forum, 2002,21(3) :511 -519.
  • 4WANG L, YOU S, NEUMANN U. Semiautomatic registration be- tween ground-level panoramas and an orthorectified aerial image for building modeling[ C]// IEEE 11 th International Conference on Computer Vision. Piscataway, NJ: IEEE, 2007:1-8.
  • 5FRUEH C, ZAKHOR A. 3D model generation for cities using aerial photographs and ground level laser scans[ C]// CVPR 2001 : Computer Vision and Pattern Recognition Conference. Washington, DC: IEEE Computer Society, 2001, 2:31 - 38.
  • 6ROBERTSONAND D P, CIPOLLA R. Building architectural models from many views using map constraints[ C]//ECCV 2002: European Conference on Computer Vision, LNCS 2351. Berlin: Springer- Verlag, 2002:155 - 169.
  • 7FIALA M, BASU A. Panoramic stereo reconstruction using non-SVP optics [ J]. Computer Vision and Image Understanding, 2005, 98 (3) : 363 -397.
  • 8FIALA M, BASU A. Hough transform for feature detection in panoramic images [ J]. Pattern Recognition Letters, 2002, 23( 14): 1863 - 1874.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部