期刊文献+

基于连续介质模型的颗粒材料孔隙度及孔隙水压力计算公式 被引量:6

Evolution of porosity and pore water pressure of granular materials based on continuum model
下载PDF
导出
摘要 孔隙度是能够部分反映颗粒材料微观结构的一个宏观量,其数值及其演化对颗粒材料的宏观力学行为有重要影响。基于连续介质模型,在颗粒体积应变均匀的前提下推导了颗粒材料的孔隙度随颗粒集合局部平均体积应变的演化公式,并应用该关系式结合孔隙水状态方程给出了饱和颗粒材料的孔隙水压力与孔隙度、固体颗粒体积模量、固体颗粒变形之间的关系。所得公式可用于饱和含液颗粒材料流–固耦合计算或饱和多孔介质宏观–细观多尺度流–固耦合渗流分析。 The porosity is a macro-variable which can represent partly micro-structures of granular materials. Based on the continuum model of granular materials, an evolution formula for the porosity with local average volumetric strain of granular assembly is deduced. Provided the change of grain volume is uniform, and the formula is aUied with pore water state equation, the relationship among the pore water pressures and the porosity, the volumetric module of grain and the volumetric strain of grain for saturated granular materials is presented. The results obtained can be applied to the numerical simulation of fluid-solid coupling for statured granular materials or to the multi-scale analysis of fluid-solid seepage for porous materials.
作者 楚锡华
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2009年第8期1255-1257,共3页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金项目(10802060)
关键词 孔隙度 孔隙水压力 颗粒材料 多孔介质 连续模型 porosity pore water pressure granular material porous medium continuum model
  • 相关文献

参考文献6

二级参考文献24

  • 1李锡夔,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟[J].岩石力学与工程学报,2005,24(9):1497-1505. 被引量:22
  • 2沈珠江.关于固结理论和有效应力的讨论[J].岩土工程学报,1995,17(6):118-119. 被引量:22
  • 3郭尚平 刘慈群(等).渗流力学的近况与展望[J].力学与实践,1981,3(3):2-6.
  • 4冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61-65. 被引量:121
  • 5TERZAGHI K, Theorerical Soil Mechanics [M].NewYork : Wiley, 1943.
  • 6BIOT M A. General theory of three dimensional consolidation[J]. J. Appl. Phys., 1941, 12: 155-164.
  • 7BIOT M A. Willis D G. The elastic coefficients of the theory of consolidation[J]. ASME J. Appl Mech. ,1957, 24: 594-601.
  • 8ZIENKIEWICZ O C and SHIOMI T. Dynamic behavior of saturated porous media: the generalized Blot formulation and its numerical solution[J]. Int. J. Num.and Analy. Meth. in Geomech, 1984, 8: 71-96.
  • 9CHEN H Y. Coupled fluid flow and geomechanics in reservoir study-1. Theory and governing equations[R]. SPE 30752, 1995.
  • 10de Borst R,Sluys L J.Localization in a Cosserat continuum under static and dynamic loading conditions[J].Comput.Methods Appl.Mech.Eng.,1991,90:805-827.

共引文献272

同被引文献81

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部