期刊文献+

多目标进化算法的一种基于生成树的分布性维护方法

Spanning tree-based diversity maintenance in multi-objective evolutionary algorithms
下载PDF
导出
摘要 针对多目标进化算法的种群维护和运行效率相矛盾的问题,提出了一种基于生成树的分布性维护方法,即对整个种群构造一棵生成树,定义一种密度估计指标——树聚集距离,并结合树中的最短树枝和个体度数对种群进行维护。由于树聚集距离和度数具有动态性,每移出一个个体,种群中与之相连个体的信息都会发生相应的变化,因而可即时反映出种群的分布情况。与三个著名的算法NSGA-Ⅱ、SPEA2和C-NSGA-Ⅱ的比较实验表明,该方法能在得到良好分布性解集的同时,能以较快的速度对种群进行维护,具有较好的时间效率。 The paper proposes a new method for maintaining the diversity of multi-objective evolutionary algorithms (MOEA) using the spanning tree. The method defines a density estimation metric, the spanning tree crowding distance. Moreover, it applies the shortest edge and the degree in the spanning tree combined with the spanning tree crowding distance to population tnmcation. The extensive comparative study with the three other classical methods of NSGA- Ⅱ , SPEA2 and C- NSGA- Ⅱ on four performance metrics and twelve test problems, indicates that the proposed method has a good balance among uniformity, extent and execution time.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2009年第8期825-832,共8页 Chinese High Technology Letters
基金 国家自然科学基金(60773047) 863计划(2001AA114060) 湖南省自然科学基金(05JJ30125)资助项目
关键词 多目标优化 进化算法 分布性维护 生成树 种群 multi-objective optimization, evolutionary algorithms, diversity maintenance, spanning tree, popula- tion
  • 相关文献

参考文献12

  • 1Deb K. Multi-Objective Optimization using Evolutionary Algorithins. Chichester, UK: John Wiley & Sons, 2001. 1-7.
  • 2Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 21X/2, 6(2) : 152-197.
  • 3Knowles J, Come D W. Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Transactions on Evolutionary Computation, 2003, 7 ( 2 ) : 100-116.
  • 4Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm: [ technical report]. Zurich, Switzerland: Computer Engineering and Network Laboratory, Swiss Federal Institute of Technology, 2001.
  • 5Kukkonen S, Deb K. Improved pruning of non-dominated solutions based on crowding distance for hi-objective optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation ( CEC' 2006 ), Vancouver, Canada, 2006. 3995-4002.
  • 6Kuang D, Zheng J H. Strategies based on polar coordinates to keep diversity in multi-objective genetic algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC'2005), Edinburgh, Scotland, 2005. 1276-1281.
  • 7Kukkonen S, Deb K. A fast and effective method for pruning of non-dominated solutions in many-objective problems. In: Proceedings of the 9th International Conference on Parallel Problem Solving from Nature, Reykjavik, Iceland, 2006. 553-562.
  • 8Li M Q, Zheng J H, Xiao G X. An efficient multi-objective evolutionary algorithm based on minimum spanning tree. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC'2008), Hong Kong, China, 2008. 617-624.
  • 9Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 2000, 8(2) : 173-195.
  • 10Deb K, Mohan M, Mishra S. Towards a quick computation of well-spread pareto-optimal solutions. In: Proceedings of the 2nd Evolutionary Multi-Criterion Optimization Conference (EMO' 2003), Faro, Portugal, 2003. 222-236.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部