期刊文献+

一种新的雷达信号分离技术研究 被引量:2

A New Research of Radar Signal Sorting Techniques
下载PDF
导出
摘要 针对目前传统分选方法无法适应密集、复杂、多变的现代雷达对抗信号环境,提出将雷达信号分选工作搬移到中频段进行、基于快速独立分量分析的雷达信号分选算法,讨论了采样时间的选取对迭代次数、相似系数的影响,验证了算法分离微弱信号的有效性和可行性。同时,强调了基于该法的信号分选可以与信号识别的硬件模块在中频段实现合并化。仿真实验表明,该技术可以很好地分离各种不同调制方式下的脉冲雷达信号以及连续波雷达信号,对传统分选方法难以应付的PRI随机的雷达信号也十分有效。 A new technology of radar signals sorting, based on the fast independent component analysis (Fast ICA) and carried out at intermediate frequency(IF), has been proposed in this paper, in order to overcome the shortage in the traditional sorting method which fails to adapt to the dense, complicated and changefully modern radar countermeasure signal environments. It discusses the influence of the sampling time choice to iterative number and the similar coefficients, certifies the effectiveness and feasibility of this new technology for separating the weak signals. Meanwhile, signals sorting, together with signals identification, can be implemented on a single hardware module at IF has been emphasized. Simulation results show that the sorting technology can be used to separate various kinds of radar pulse signals in different modulations and CW radar signals, especially to the stochastic PRI radar signals to which the traditional sorting method is difficult to apply.
作者 蔡智富 赵洁
出处 《弹箭与制导学报》 CSCD 北大核心 2009年第4期230-234,共5页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 雷达信号分选 快速独立分量分析算法 盲信号抽取 radar signal sorting Fast ICA BSE
  • 相关文献

参考文献4

  • 1A Hyvarinen. New approximations of differential entropy for independent component analysis and projection pursuit[J]. Advances in Neural Information Processing Systems, 1997, 10 (1): 273- 279.
  • 2A Hyvarinen. A family of fixed-point algorithm and application[J]. Neural Network, 2000, 13 (4/5) :411--430.
  • 3A Hyvarinen. A fast fixed-point algorithm for in- dependent component analysis[J]. Neural Computation,1997,9(7) :1483--1492.
  • 4A Hyvarinen. Fast and robust fixed-point algorithm for independent component analysis [J]. IEEE Trans. on Neural Network, 1999,10(3) : 626--634.

同被引文献19

  • 1章新华.盲源分离技术及其水声信号处理中的应用[J].声学技术,2004,23(z1):145-149. 被引量:1
  • 2朱晓峰.协方差矩阵和相关系数矩阵下主成分分析比较研究[J].中国体育科技,2005,41(3):134-136. 被引量:9
  • 3黄丽妍,高强,亢海燕,赵振兵,许怡娴.改进的快速独立分量分析算法[J].华北电力大学学报(自然科学版),2006,33(3):59-62. 被引量:12
  • 4A. Belouchrani, M. Amin. Jammer mitigation in spread spectrum communications using blind source separation [J]. Signal Processing, 2000,80(4) : 723-729.
  • 5惠俊英.水声信道[M].第2版.北京:国防工业出版社,2007,2:132-156.
  • 6张贤达.现代信号处理[M].北京:清华大学出版社,1994..
  • 7Donald M, Jonathan B, Robert M. Security analysis of the ADS-B implementation in the next generation air transporta- tion system[ J]. International Journal of Critical Infrastruc- ture Protection, 2011, (4) :78-87.
  • 8Piracci E, Petrochilos N, Ga|ati G. Superimposed mode S signals:single-antenna projection algorithm and processing architecture [ C ]//International Symposium on Signal Pro- cessing and Information Technology. Egypt : IEEE, 2007 : 1-5.
  • 9Petrochilos N, Galati G, Piracci E. Separation of SSR sig- nals by array processing in muhilateration systems [ J ]. IEEE Transactions on Aerospace and Electronic Systems,2009,45 ( 3 ) :965-982.
  • 10Huang N, Ma C F. Convergence Analysis and Numerical Study of a Fixed-Point Iterative Method for Solving Systems of Nonlinear Equations [ J 1. The Scientific World Journal, 2014,10 : 1-10.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部