摘要
提出一种稳态热环境人体热感觉模糊综合评判算法,该方法充分考虑了人的活动强度、着衣量和热环境参数(空气干球温度、平均辐射温度、相对湿度和风速)等综合作用的影响,且回避了传统模糊评判算法中构造模糊隶属函数的困难,具有可学习的能力。数值实验结果同预测平均投票指标吻合很好。该方法直接从人体调节热负荷与新陈代谢率这两个特征变量得到人体在环境中的热感觉,因此,不同于传统的以生理热反应(如皮温和发汗率)为基础的热感觉导出策略。
The methodolgy of assessing steady thermal environment using multifeature fuzzy recognition is presented. The algorithm based on this method takes into full account combinations of activity, clothing and the environmental variables (air temperature, mean radiant temperature, relative humidity and air velocity) which influence human thermal sensation, avoids the difficulty in constructing the membership function and has the learning capability. The numerical results are in good agreement with the Predicted Mean Vote index. This method directly derived the human psychological response from the two feature variables, i.e., human thermal load and metabolism, which differs from the traditional evaluating strategy on the basis of human physiological response (such as skin temperature and sweat secretion).
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1998年第7期94-97,共4页
Journal of Tsinghua University(Science and Technology)
基金
国家自然科学基金
关键词
模糊综合评判
稳态热环境
人体
热感觉
fuzzy comprehensive evaluation
pattern recognition
feature extraction
fuzzy logic reasoning