期刊文献+

基于锥形量热仪的电缆点燃积分模型 被引量:4

An integral model of cable ignition basedon the cone calorimeter test
下载PDF
导出
摘要 基于锥形量热仪的实验条件,建立了一维电缆点燃模型。试验采用聚氯乙烯(PVC)护套单芯电力电缆,热辐射强度分别选择30、40、50、60 kW/m2。结果表明:①采用积分模型得到的计算值点燃时间与试验值点燃时间比较接近,且热辐射强度越强,误差越小。②热辐射强度为25 kW/m2的积分模型计算结果:开始阶段,表面温度会迅速增高;时间越长,表面温度上升越缓慢。③电缆各层间的热量传递呈非线性关系。结论:①积分模型可较好地预测电缆的点燃时间;②电缆线芯影响着表面的温升。 Based on the experimental condition of the cone calorimeter, one-dimensional eable ignition model has been built. The test adopts core cable with PVC shield, and the heat radiation strength is 30, 40, 50, 60 kW/m2 respectively. Results show that: ①The calculative ignition time of integral model is dose to the experimental ignition time. And the stronger the heat radiation is, the smaller the error is. ② When heat radiation strength is 25 kW/m^2, the calculation results of the integral model show that: At start, the surface temperature increases rapidly. The longer the time, the slower the surface temperature rise. ③The heat transmission of the cable between layers appears to be a nonlinear relationship. Conclusion: ①The integral model may forecast the ignition time of cable better. ②Core of the cable will affect the surface temperature rise.
出处 《消防科学与技术》 CAS 北大核心 2009年第8期563-566,共4页 Fire Science and Technology
基金 国家"十一五"科技支撑计划项目(2006BAK06B02-3) 国家自然科学基金资助项目(50536030) 研究生创新基金资助项目(KD2006073)
关键词 电缆 引燃 火灾模型 cable ignition fire model
  • 相关文献

参考文献10

  • 1Matheson AF, Charge R. Properties of PVC Compounds With Improved Fire Performance for Electrical Cables [J]. Fire Safety Journal, 1992,19: 55-72.
  • 2Delichatsios MA. Basic Polymer Material Properties for Flame Spread[J]. Journal of Fire Science, 1993, 11 (4) : 287- 295.
  • 3Hopkins JD, Quintiere JG. Material Fire Properties and Predictions for Thermoplastics[J].Fire safety Journal, 1996,26 : 241-268.
  • 4Thomson H E,Drysdale D D. Flammability of plasticsⅠ: ignition temperatures[J]. Fire and Materials, 1987,11(4) :163-172.
  • 5Silcock G W H,shields T J. A Protocol for Analysis of Time to Ignition Data From Bench Scale Tests[J].Fire Safety Journal, 1995, 24(1):75-95.
  • 6Delichatsios MA, Panagiotou TH, Kiley F. The use of time to ignition data for characterizing the thermal inertia and the minimum (critical) heat flux for ignition or pyrolysis[J]. Combustion and Flame 1991, 84:323-332.
  • 7Mikkola E,Wicchman I S. On the thermal ignition of combustible materials. Fire and Materials, 1989,14(3):87- 96.
  • 8ISO 5660-1, Fire tests-reaction to fire-rate of heat release from building produets[S].
  • 9ASTM E1354- 92, Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter[S].
  • 10Spearpoint J M. Predicting the ignition and burning rate of wood in the cone calorimeter using an integral model[M]. Baltimore: University of Maryland, 1999.

同被引文献42

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部