期刊文献+

基于KDDA的人脸识别研究

Face Recognition Based on Kernel Direct Discriminant Analysis Algorithms
下载PDF
导出
摘要 由于PCA和LDA算法存在小样本问题(Smell Sample Size),结合D-LDA和Kernel,将线性不可分的低维空间映射到高维空间,并借助于"kernel技巧"克服了维度灾难问题,并且充分的利用曾经被抛弃的有用信息Null-Space。经过才ORL人脸库的实验表明,此方法比PCA,LDA提高了人脸识别的可分性,并有效地解决了小样本问题。 Such as PCA(Principle Component Analysis) and LDA (Linear Discriminant Analysis ) exists SSS("small sample size") problem, we combine D-LDA and Kernel to project the line-unseparable feature space to the height dimensional separable feature space, and to overcome curse of dimensionality through kernel trick. It also use the Null-Space that has been aborted by some other method. The new algorithm has been tested, in terms of classification error rate performance,on the multi-view ORL face database. Result indicates that the proposed methodology is able to improve the recognition rate and solve the small sample size problem (SSS).
作者 郭丰宁 陈聪
出处 《计算机与数字工程》 2009年第8期36-38,45,共4页 Computer & Digital Engineering
关键词 PCA LDA GDA KDDA KERNEL 小样本问题 PCA, LDA, GDA, KDDA, Kernel, Small Sample Size problem (SSS)
  • 相关文献

参考文献8

  • 1Vladimir N. Vapnik, Statistical Learning Theory [M]. John Wiley&Sons, Inc, 1998 : 76-79.
  • 2John Shawe-Taylor, Nello Cristianini. Kernel Methods for Pattern Analysis[M]. Cambridge University Press, 2004:321-325.
  • 3Li-FenChen, Hong-Yuan, MarkLiao, et al. A new LDA-base face recognition system which can solve the small sample size problem[J]. PatternRecognition, 2000,33: 1713-1726.
  • 4G. Baudatand F. Anouar, Generalized discriminate analysis using a kernel approach[J]. Neural Computation, 2000, (12) : 2385-2404.
  • 5K. Liu, Y. Q. Cheng, J. Y. Yang, et al. An efficient algorithm for foley-sammon optimal set of discriminant vectors by algebraic method [J]. Pattern Recog. Artif. Intell. ,1992, (6) :817-829.
  • 6Hua Yu, Jie Yang. Adirect Ida algorithm for highdimensional data with application to face recognition[J]. Pattern Recognition, 2001,34: 2067-2070.
  • 7王文涛,陈聪.基于贝叶斯支持向量机模型选择算法改进[J].中南民族大学学报(自然科学版),2009,28(1):93-96. 被引量:1
  • 8Vladimir N. V. The Nature of Statistical Learning Theory[M]. Springer, 1999; 93-102.

二级参考文献1

  • 1Peter Sollich. Bayesian Methods for Support Vector Machines: Evidence and Predictive Class Probabilities[J] 2002,Machine Learning(1-3):21~52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部