期刊文献+

两两NQD序列密度函数核估计的相合性 被引量:4

Consistencies for Kernel-type Density Estimation in the Case of Pairwise NQD Random Sequences
下载PDF
导出
摘要 目的探讨两两NQD随机变量序列的密度核估计是否具有与NA序列密度核估计类似的相合性.方法设{Xn,n 1}为同分布的两两NQD随机变量序列,f(x)为X1的概率密度函数.基于样本X1,X2,…,Xn,给出了密度函数f(x)的核估计,在一定条件下,结合NA序列的相关结果的证明方法,引证后经过认真严谨的推导得出结论.结果(1)两两NQD序列的r阶平均相合性:(i)limn→∞E|fn(x)-f(x)|r=0,(ii)E|fn(x)-f(x)|r=O(n-r4);(2)逐点强相合性:fn(x)-f(x)→0,a.s.,对f(x)的任何连续点x成立;(3)一致强相合性:limn→∞sxu∈Ip|fn(x)-f(x)|=0,a.s.结论两两NQD随机变量序列的密度核估计具有较好的相合性. Objective To discuss the consistencies of the kernel-type density estimation in the case of pariwise NQD random sequences. Method Let {Xn, n≥1} be a sequence of identically distributed and pariwise NQD random variables with probability density function f(x). Based on pairwise NQD samples, the kernel estimator for f (x) is constructed. Under some conditions, referring to the result of NA random sequences, this paper derives the result seriously and rigorously. Result (1) The consistency in rorder mean: (i) limE | fn(x) --f(x)|r=0, (ii) E|f(x) --f(x) | r=O (nr/4); (2) the pointwise strong consistency: fn (x) --f (x) →0, a. s. (3) the strong uniform consistency is shown under suitable conditions: limsup|fn(x)-f(x)|=0, a.s.. Conclusion The kernel-type density estimation in the case of pariwise NQD random sequences possesses the consistencies.
作者 孙桂萍
出处 《河北北方学院学报(自然科学版)》 2009年第4期1-6,共6页 Journal of Hebei North University:Natural Science Edition
关键词 两两NQD序列 NQD序列 密度函数核估计 相合性 pariwise NQD random variables sequences negatively associated random variables sequences the kernel estimator for density function consistency
  • 相关文献

参考文献6

二级参考文献18

  • 1苏淳.NA序列的一个Hsu-Robbins型定理[J].科学通报,1996,41(2):106-110. 被引量:20
  • 2苏淳,赵林城,王岳宝.NA序列的矩不等式与弱收敛[J].中国科学(A辑),1996,26(12):1091-1099. 被引量:88
  • 3潘建敏.NA序列中心极限定理的收敛速度(英文)[J].应用概率统计,1997,13(2):183-192. 被引量:37
  • 4[1]Lehman E. L. Some concepts of dependence[J]. Ann. Math. Statist., 1966, 43: 1137~1153.
  • 5[2]Matula P. A note on the almost sure convergence of sums of negatively dependent random variable [J]. Statistics & Probability Letter,1992,15:209~213.
  • 6[5]Stout W. F. Almost sure convergence[M]. New York: Academic Press,1974:260~280.
  • 7[6]Joag Dev K, Proschan F. Negative association of random variables with application[J]. Ann. Statist, 1983 (11): 286~295.
  • 8Pan J M,应用概率统计,1997年,13卷,183页
  • 9苏淳,中国科学.C,1996年,26卷,1091页
  • 10Prakasa Rao B L S,Nonparametric function estimation,1983年

共引文献157

同被引文献12

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部