期刊文献+

关于(S_Z(q),1)—弧正则图的构造 被引量:1

On Construction of(Sz(q),1)-Arc Regular Graph
下载PDF
导出
摘要 本文讨论了5度的容许Suzuki单群Sz(q)的正则图Γ,利用其点稳定化子Γ=S(q)a,a∈V(Γ),并利用Sz (q)的2—元给出了该正则图Γ的构造。 In this paper, we construct all (Sz (q), 1 ) regular graphs with valency 5 by determining the point stabilizer Г= S (q) α, α∈V(Г) and 2-element of Sz (q) and constructing Г( 5, Sz (q) ).
作者 陈华 万敏
出处 《石河子大学学报(自然科学版)》 CAS 2009年第4期526-528,共3页 Journal of Shihezi University(Natural Science)
关键词 单群 弧正则图 构造 极大子群 稳定化子 Suzuki simple group are-regular graph construction maximal subgroup point stabilizer
  • 相关文献

参考文献10

  • 1W T Tutte. A family of cubic graphs [ J ]. Proc Cambridge Phil Soc, 1947,43:459-474.
  • 2R M Weiss. The nonexistence of S-arc transitive graphs [J]. Combinatoria, 1981,3 : 309-311.
  • 3C H Li. The finite vertex-primitive and vertex-biprimitive stansitive graphs for [ J ]. Transitions of AMS, 2001,353 : 3511-3529.
  • 4X G Fang,G Havas,J Wang. A family of non-quasiprimitive graphs adimitting a quasiprimitive 2-arc transitive group action[ J ]. Europe J Combin, 1999, 20:551-557.
  • 5X G Fang, C E Praeger. Finite two-arc transitive graphs ad-mitting a Suzuki simple group [ J ]. Communications in Algebra, 1999,27:3727-3754.
  • 6H Chen,X G Fang,J Wang. On primitive symmetric graphs Suzuki simple group, to appear, (2009).
  • 7G O Sabidussi. Vertex-transitive graphs [ J ]. Monatsh Math, 1964,68:426-438.
  • 8P Lorimer. Vertex-transitive graphs: Symmetric graphs of prime valency [ J ]. J Graph Theory, 1984,8:55-68.
  • 9M Suzuki. A new type of simple group of finite order[ J ]. Proc Nat Acad. Sci, 1960,46:868-870.
  • 10M Suzuki. On a olass of doubley transitive groups [ J ]. Annals of Mathematics, 1962,75 : 105-145.

同被引文献16

  • 1Li T K.Cycle embedding in star graphs with edge faults[J]. Applied Mathematics and Computation,2005,167:891-900.
  • 2Tewes M.Pancyclic in-tournaments[J].Discrete Mathemat- ics,2001,233:193-204.
  • 3Xu J M.Topological structure and analysis of intercon- nection networks[M].Springer,2002.
  • 4Xu J M,Ma M J.Survey on path and cycle embedding in some networks [J].Frontiers of Mathematics in Chi- na,2009,4(2):217-252.
  • 5Tsai P Y,Chen G H,Fu J S.Edge-fauh-tolerant pancyclic- ity of alternating group graphs [J].Networks,2009,53 (3): 307-313.
  • 6Mao J W.Chang-Biau YangShortest Path Routing and Fault-Tolerant Routing on de Bruijn Networks [J].Net- works,2000,35(3):207-215.
  • 7Araki T.On the k-tuple domination of de Brujin and Kautz digraph[J];Information Processing lettters,2007,104: 86-90.
  • 8Shan E F,Dong Y X,Cheng Y K.The twin domination number in generalized de Brujin digraph[J].Information Processing lettters,2009,109:856-860.
  • 9Bermond J C,Homobono N,Peyrat C.Conneetivity of Kautz networks[J].Diseret Matbematies,1993A14:51-61.
  • 10Liu J,Sun L, Meng J X.A line digraph of a complete bipartite digraph[J].Apptied Mathematics Letters,2009,22 (4):544-547.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部