期刊文献+

Hilbert空间上最终范数连续半群的扰动

Perturbation of Eventually Norm Continuous Semigroups on Hilbert Space
下载PDF
导出
摘要 在算子半群扰动的基础上,对一类型半群即最终范数连续半群的扰动进行了研究,得到了Hilbert空间中最终范数连续半群的一个新的扰动结果,使得半群扰动的结果更加丰富. The perturbation of eventually norm continuous semigroups is studied on the basis of operator semigroups perturbation. A new perturbation result on the Hilbert space for the eventually normcontinuous semigroups is obtained, which makes the perturbation of the semigroups more abundant.
作者 赵转萍
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2009年第4期312-314,共3页 Journal of North University of China(Natural Science Edition)
基金 回国留学人员基金资助项目
关键词 半群 最终范数连续半群 相对有界 扰动 semigroups eventually norm-continuous semigroups relatively-bounded perturbation
  • 相关文献

参考文献3

二级参考文献10

  • 1PAZY A.Semigroups of Linear Operators and Applications to Partial Differential Equations[M].New York:Springer,1983.
  • 2ZHENG Q.Strongly Continuous Semigroups of Linear Operators[M].Wuhan:Huazhong University of Science and Technology Press,1994:101-103.
  • 3ENGEL K J,NAGEL R.One-parameter Semigroups for Linear Evolution Equation[M]//Graduate Texts in Mathematics,New York:Berlin,2004.194.
  • 4XU Gen-qi.Eventually Norm Continuous Semigroups on Hilbert Space and Perturbation[J].J Math Anal Appl,2004,289:493-504.
  • 5EL-MENNAOUI O,ENGEL K J.On the Characterization of Eventually Norm-continuous Semigroups in Hilbert Space[J].Arch Math,1994,(63):437-440.
  • 6ZHANG L P.Characterizations and Perturbation of Eventually Norm-continuous Semigroups on Hilbert Spaces,(submitted to Proceedings of the American Mathematical Society.)
  • 7PAZY A.Semigroup of Operators and Applications to Partial Differential Equations[M].New York:Spinger,1983.
  • 8HU Z,ZHANG L.On the property and application of the Yosida approximation[J].J.Shanxi Univ.2003,26(3):200-203.
  • 9ZHANG LIANPING.Perturbations of eventually differentiable and eventually norm-continous semigroups on Banach spaces[J].J.Math.Anal,2006,322:523-529.
  • 10关权.强连续线性算子半群[M].武汉:华中科技大学出版社,1994.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部